欧宝体育

欢迎访问 欧宝体育,今天是

土(tu)壤干扰、秸秆覆盖及AM真菌对蒺藜苜(mu)蓿生长(zhang)及土(tu)壤水稳性团(tuan)聚体(ti)的影响

李法喜 段廷玉

引用本文: 李法喜,段廷玉. 土壤干扰、秸秆覆盖及AM真菌对蒺藜苜蓿生长及土壤水稳性团聚体的影响. 欧宝体育, 2021, 38(7): 1310-1318 doi: shu
Citation:  LI F X, DUAN T Y. Effects of soil disturbance, residue application, and arbuscular mycorrhizal (AM) symbiosis on growth of and soil water-stable aggregates. Pratacultural Science, 2021, 38(7): 1310-1318 doi: shu

土壤干扰、秸秆覆盖及AM真菌对蒺藜苜蓿生长及土壤水稳性团聚体的影响

    作者简介: 李法喜(1996-),男,湖南蓝山人,在读硕士生,研究方向为植物病理学。E-mail: lifx19@webs-seo.com
    通讯作者: 段廷玉(1976-),男,甘肃靖远人,教授,博士,研究方向为植物病理学。E-mail: duanty@webs-seo.com
  • 基金项目: 国家绿肥产业技术体系(CARS-22);国家牧草产业技术体系(CARS-34)

摘要: AM真菌–植物共生体在农业生态系统中扮演着重要角色,容易受到耕作和秸秆覆盖等农业措施的影响。本研究以小麦(Triticum aestivum)、蒺藜苜蓿(Medicago truncatula)为对象,模拟田间小麦→苜蓿轮作系统,探究了土壤干扰/不干扰以及秸秆覆盖/不覆盖处理下不同AM真菌及其组合对蒺藜苜蓿生长及土壤水稳性团聚体的影响。结果表明: 1) AM真菌和蒺藜苜蓿的不同组合对土壤干扰和秸秆覆盖的响应存在差异性;2) 土壤干扰会抑制AM真菌对蒺藜苜蓿的生长和磷吸收的促进作用,土壤干扰可影响AM真菌,进而影响蒺藜苜蓿;3) 秸秆覆盖提高了蒺藜苜蓿生长和磷吸收;4) AM真菌总体上增加了土壤水稳性团聚体含量,土壤干扰和秸秆覆盖对土壤团聚体的影响,因土壤团聚体颗粒直径大小而异。综上所述,在田间条件下,适宜的AM真菌、免耕以及秸秆还田有利于改善土壤结构、减少水土流失和提高作物产量。

English

    1. [1]

      任承钢, 孔存翠, 李岩, 刘卫, 解志红.  丛枝菌根真菌-植物共生体耐盐机制的研究进展[J]. 中国科学: 生命科学, 2016, 46(9): 1062-1068. doi:
      REN C G, KONG C C, LI Y, LIU W, XIE Z H.  Advances on salt tolerance mechanism of arbuscular mycorrhizal fungi-plant symbiosis[J]. Scientia Sinica Vitae, 2016, 46(9): 1062-1068. doi:

    2. [2]

      高萍, 李芳, 郭艳娥, 段廷玉.  丛枝菌根真菌和根瘤菌防控植物真菌病害的研究进展[J]. 草地学报, 2017, 25(2): 236-242. doi:
      GAO P, LI F, GUO Y E, DUAN T Y.  Advances in AM fungi and rhizobium to control plant fungal diseases[J]. Acta Grassland Sinica, 2017, 25(2): 236-242. doi:

    3. [3]

      王维华, 许琳, 刘润进.  不同AMF组合提高黄瓜抗根结线虫效果的比较[J]. 菌物学报, 2017, 36(7): 1010-1017.
      WANG W H, XU L, LIU R J.  Effects of combined inoculation with various arbuscular mycorrhizal fungi on plant resistance to root-knot nematode disease in cucumber[J]. Mycosystema, 2017, 36(7): 1010-1017.

    4. [4]

      林子然, 张英俊.  丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响[J]. 欧宝体育, 2018, 35(1): 115-122. doi:
      LIN Z R, ZHANG Y J.  Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress[J]. Pratacultural Science, 2018, 35(1): 115-122. doi:

    5. [5]

      LUISA L, VALENTINA F, CAROLINE G.  Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2018, 220(4): 1031-1046. doi:

    6. [6]

      MEI L L, YANG X, ZHANG S Q, ZHANG T, GUO J X.  Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N: P ratios under warming and nitrogen addition in a temperate meadow ecosystem[J]. Science of The Total Environment, 2019, 686(): 1129-1139. doi:

    7. [7]

      POWELL J R, RILLIG M C.  Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059-1075. doi:

    8. [8]

      WANG Z T, LI Y Z, LI T, ZHAO D L, LIAO Y C.  Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi[J]. Science of the Total Environment, 2020, 710(): 136326-. doi:

    9. [9]

      VIVANI DE LA CRUZ-ORTIZ A, ALVAREZ-LOPEZTELLO J, ROBLES C, HERNANDEZ-CUEVAS L V.  Tillage intensity reduces the arbuscular mycorrhizal fungi attributes associated with Solanum lycopersicum, in the Tehuantepec Isthmus (Oaxaca), Mexico[J]. Applied Soil Ecology, 2020, 149(): 103519-. doi:

    10. [10]

      ROSNER K, HAGE-AHMED K, BODNER G, STEINKELLNER S.  Soil tillage and herbicide applications in pea: Arbuscular mycorrhizal fungi, plant growth and nutrient concentration respond differently[J]. Archives of Agronomy and Soil Science, 2019, 12(66): 1679-1691.

    11. [11]

      ROSNER K, BODNER G, HAGE-AHMED K, STEINKELLNER S.  Long-term soil tillage and cover cropping affected arbuscular mycorrhizal fungi, nutrient concentrations, and yield in sunflower[J]. Agronomy Journal, 2018, 110(6): 2664-2672. doi:

    12. [12]

      DERKOWSKA E, PASZT L S, SUMOROK B, DYKI B.  Colonisation of apple and blackcurrant roots by arbuscular mycorrhizal fungi following mycorrhization and the use of organic mulches[J]. Folia Horticulturae, 2013, 25(2): 117-122. doi:

    13. [13]

      WANG X, QI J Y, ZHANG X Z, LI S S, VIRK A L, ZHAO X, XIAO X P, ZHANG H L.  Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil and Tillage Research, 2019, 194(): 104339-. doi:

    14. [14]

      YAN L, JIANG X X, JI X N, ZHOU L T, LI S Y, CHEN C, LI P Y, ZHU Y C, DONG T H, MENG Q F.  Distribution of water-stable aggregates under soil tillage practices in a black soil hillslope cropland in northeast china[J]. Journal of Soils and Sediments, 2020, 20(1): 24-31. doi:

    15. [15]

      MODAK K, BISWAS D R, GHOSH A, PRAMANIK P, DAS T K, DAS S, KUMAR S, KRISHNAN P, BHATTACHARYYA R.  Zero tillage and residue retention impact on soil aggregation and carbon stabilization within aggregates in subtropical India[J]. Soil and Tillage Research, 2020, 202(): 104649-. doi:

    16. [16]

      HUANG R, LAN M L, LIU J, GAO M.  Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning[J]. Environmental Science and Pollution Research, 2017, 24(36): 27942-27952. doi:

    17. [17]

      BU R Y, REN T, LEI M J, LIU B, LI X K, CONG R H, ZHANG Y Y, LU J W.  Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system[J]. Agriculture Ecosystems and Environment, 2020, 287(): 106681-. doi:

    18. [18]

      段廷玉. 干扰与竞争条件下丛枝菌根菌和数种作物的互作. 兰州: 兰州大学博士学位论文, 2010.
      DUAN T Y. Interactions of arbuscular mycorrhizal (AM) fungi and several crop species under disturbance and competition. PhD Thesis. Lanzhou: Lanzhou University, 2010.

    19. [19]

      GIOVANNETTI M, MOSSE B.  An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980, 84(3): 489-500. doi:

    20. [20]

      鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2011.
      BAO S D. Soil Agrochemical Analysis (The Third Edition). Beijing: China Agricultural Press, 2011.

    21. [21]

      JOHNSON D, LEAKE J R, READ D J.  Novel in-grown core system enables functional studies of grassland mycorrhizal mycelial networks[J]. New Phytologist, 2001, 152(3): 555-562. doi:

    22. [22]

      TISDALL J M, OADES J M.  Stabilization of soil aggregates by the root systems of ryegrass[J]. Australian Journal of Soil Research, 1979, 17(3): 429-441. doi:

    23. [23]

      LI H Y, ZHU Y G, MARSCHNER P, SMITH F A, SMITH S E.  Wheat response to arbuscular mycorrhizal fungi in a highly calcareous soils differ from those of clover, and change with plant development and P supply[J]. Plant and Soil, 2005, 277(1): 221-232.

    24. [24]

      LI H Y, SMITH S E, HOLLOWAY R E.  Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytologist, 2006, 172(3): 536-543. doi:

    25. [25]

      DAI M, HAMEL C, BAINARD L D, ST AENAUD M, GEANT C A, LUPWAYI N Z, MALHI S S, LEMKE R.  Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian Prairie[J]. Soil Biology and Biochemistry, 2014, 74(): 156-166. doi:

    26. [26]

      SMITH S E, SMITH FA, JAKOBSEN I.  Mycorrhizal fungi can dominate phosphate supply to plant irrespective of growth responses[J]. Plant Physiology, 2003, 133(1): 16-20. doi:

    27. [27]

      KLIRONOMOS J N.  Variation in plant response to native and exotic arbuscular mycorrhizal fungi[J]. Ecology, 2003, 84(9): 2292-2301. doi:

    28. [28]

      DUAN T Y, FACELLI E, SMITH S E, SMITH F A, NAN Z B.  Differential effects of soil disturbance and plant residue retention on function of arbuscular mycorrhizal (AM) symbiosis are not reflected in colonization of roots or hyphal development in soil[J]. Soil Biology and Biochemistry, 2011, 43(3): 571-578. doi:

    29. [29]

      PANKHURST C E, KIRKBY C A, HAWKE B G, HARCH B D.  Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia[J]. Biology and Fertility of Soils, 2002, 35(3): 189-196. doi:

    30. [30]

      陈汝, 王来平, 翟浩, 薛晓敏, 王金政.  有机物料覆盖对土壤微环境、树体生长及光合速率的影响[J]. 天津农业科学, 2019, 25(5): 18-21. doi:
      CHEN R, WANG L P, ZHAI H, XUE X M, WANG J M.  Effects of organic material coverage on soil microenvironment, tree growth and photosynthetic rate[J]. Tianjin Agricultural Sciences, 2019, 25(5): 18-21. doi:

    31. [31]

      FREW A.  Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C-3 and C-4 crop plants[J]. Soil Biology and Biochemistry, 2019, 135(): 248-250. doi:

    32. [32]

      XOMPHOUTHEB T, JIAO S, GUO X, MABAGALA F S, SUI B, WANG H, ZHAO L, ZHAO X.  The effect of tillage systems on phosphorus distribution and forms in rhizosphere and non-rhizosphere soil under maize (Zea mays L.) in northeast china[J]. Scientific Reports, 2020, 10(1): 6574-. doi:

    33. [33]

      HASBULLAH, MARSCHNER P, AND MCNEILL A.  Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat[J]. Biology and Fertility of Soils, 2011, 47(6): 701-707. doi:

    34. [34]

      SHENG M, LALANDE R, HAMEL C, ZIADI N.  Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of eastern Canada[J]. Plant and Soil, 2013, 369(1): 599-613.

    35. [35]

      SALE V, AGUILERA P, LACZKO E, MADER P.  Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2015, 84(): 38-52. doi:

    36. [36]

      SMITH S E, READ D J.  Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273-281.

    37. [37]

      AVIO L, CASTALDINI M, FABIANI A, BEDINI S, SBRANA C, TURRINI A, GIOVANNETTI M.  Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem[J]. Soil Biology and Biochemistry, 2013, 67(): 285-294. doi:

    38. [38]

      WANG P, WANG Y, AND WU Q S.  Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China[J]. Soil and Tillage Research, 2016, 155(): 54-61. doi:

    39. [39]

      DE PONTES J S, OEHL F, PEREIRA C D, DE TOLEDO MACHADO C T, COYNE D, DA SILVA D K A, MAIA C L.  Diversity of arbuscular mycorrhizal fungi in the Brazilian's Cerrado and in soybean under conservation and conventional tillage[J]. Applied Soil Ecology, 2017, 117(): 178-189.

    40. [40]

      LU X Y, LU X N, AND LIAO Y C.  Effect of tillage treatment on the diversity of soil arbuscular mycorrhizal fungal and soil aggregate-associated carbon content[J]. Frontiers in Microbiology, 2018, 9(): 2986-. doi:

    41. [41]

      BARBOSA M V, PEDROSO D D F, CURI N, CARNEIRO M A C. Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Science and Agrotechnology, 2019, 43(1): 1-9.

    42. [42]

      MILLER R M, KLING M.  The importance of integration and scale in the arbuscular mycorrhizal symbiosis[J]. Plant and Soil, 2000, 226(2): 209-309.

    43. [43]

      王志明, 朱培立, 黄东迈.  14C标记秸秆碳素在淹水土壤中的转化与平衡[J]. 江苏农业学报, 1998, (2): 3-5.
      WANG Z M, ZHU P L, HUANG D M.  Carbon transformation and balance of 14C-labelled straw in submerged soils[J]. Jiangsu Journal of Agricultural Sciences, 1998, (2): 3-5.

    44. [44]

      莫艳华, 汤佳, 张仁铎, 李方舟.  外加营养源作用下微生物黏结剂对土壤团聚体的影响[J]. 环境科学, 2012, 33(3): 952-957.
      MO Y H, TANG J, ZHANG R D, LI F Z.  Impact of microbial aggregating agents on soil aggregate stability under addition of exogenous nutrients[J]. Environmental Science, 2012, 33(3): 952-957.

    1. [1]

      钟睿周晓蓉张稚钦夏超李娜娜张兴旭 . 不同生境下Epichloë gansuensis对醉马草根际土壤丛枝菌根真菌的影响. 欧宝体育, 2017, 11(8): 1627-1634. doi: 

    2. [2]

      李玖燃丁红利任豫霜张磊 . 不同用地土壤有机质和微生物对添加秸秆的响应. 欧宝体育, 2017, 11(5): 958-965. doi: 

    3. [3]

      张剑雄谷丰朱波周明华 . 林草恢复对热水河小流域侵蚀区土壤团聚体稳定性与有机碳氮特征的影响. 欧宝体育, 2021, 38(6): 1012-1023. doi: 

    4. [4]

      邓杰李芳古丽君段廷玉 . 不同土壤pH下AM真菌对苜蓿苗期生长的影响. 欧宝体育, 2019, 36(11): 2854-2862. doi: 

    5. [5]

      陈帅孙涛 . 松嫩草地不同退化阶段的土壤团聚体稳定性. 欧宝体育, 2017, 11(2): 217-223. doi: 

    6. [6]

       黄土高原不同耕作措施下AM真菌的多样性. 欧宝体育, 2016, 10(10): 1917-1923. doi: 

    7. [7]

      郑瑞师尚礼马史琛 . 苜蓿、小麦自毒及他感作用机理. 欧宝体育, 2019, 36(3): 849-860. doi: 

    8. [8]

      林子然张英俊 . 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 欧宝体育, 2018, 12(1): 115-122. doi: 

    9. [9]

      王婷李建平张翼井乐张茹 . 不同降水下天然草地土壤水稳定性团聚体分布特征. 欧宝体育, 2019, 36(8): 1935-1943. doi: 

    10. [10]

      蔡太义张合兵陈志超刘昌华黄会娟王 康徐 丹 . 新郑市农田土壤有机质的空间变异. 欧宝体育, 2014, 8(5): 818-825. doi: 

    11. [11]

      刘超文马文明周青平陈红 . 草地灌丛化土壤碳氮地球化学循环. 欧宝体育, 2020, 37(4): 645-657. doi: 

    12. [12]

      陈强孙涛宋春雨 . 免耕对土壤物理性状及作物产量影响. 欧宝体育, 2014, 8(4): 650-658.

    13. [13]

      闫飞扬段廷玉张峰 . 农业管理措施对AM真菌功能影响的研究进展. 欧宝体育, 2014, 8(12): 2230-2241. doi: 

    14. [14]

      魏勇吴茜茜李应德王晓瑜常生华段廷玉 . AM真菌和根瘤菌对紫花苜蓿生长及其营养价值的影响. 欧宝体育, 2020, 37(6): 1115-1123. doi: 

    15. [15]

      徐孟郭绍霞 . AMF对土壤压实胁迫下高羊茅生理的影响. 欧宝体育, 2018, 12(6): 1378-1384. doi: 

    16. [16]

      杨成兰段瑞君武雄雄祁存英马银花熊辉岩 . 蒺藜苜蓿GPAT基因家族的全基因组鉴定、序列变异和表达分析. 欧宝体育, 2021, 38(10): 1-9. doi: 

    17. [17]

      杨海霞徐萌刘宁郭绍霞 . 丛枝菌根真菌对两种草坪草耐盐性的影响. 欧宝体育, 2014, 8(7): 1261-1268. doi: 

    18. [18]

      张峰段廷玉闫飞扬李芳 . 丛枝菌根真菌与根际微生物的互作. 欧宝体育, 2014, 8(9): 1673-1685. doi: 

    19. [19]

      秦明森关佳威刘永俊潘建斌石国玺蒋胜竞冯虎元 . 丛枝菌根真菌对车轴草属植物生长影响的Meta分析. 欧宝体育, 2015, 9(10): 1576-1585. doi: 

    20. [20]

      吴涛姚红艳莫本田龙忠富罗充 . 8种豆科灌木栽培种丛枝菌根真菌种类及分布. 欧宝体育, 2016, 10(2): 210-218. doi: 

  • 欧宝体育

    图 1  不同处理蒺藜苜蓿茎叶干重、根干重

    Figure 1.  Shoot dry weight and root dry weight of Medicago truncatula under different treatments

    R: 秸秆覆盖;NR: 未加秸秆。不同小写字母表示不同干扰及AM真菌组合处理下存在显著差异(P < 0.05);*表示同一土壤干扰及AM真菌处理下,秸秆覆盖与不覆盖处理存在显著差异(P < 0.05);下图同。

    R: residue application; NR: non-residue. Different lowercase letters on the bars indicate significant differences between soil disturbance and arbuscular mycorrhizal fungi (AMF) combination treatments at the 0.05 level, and * indicate significant differences between residue application and non-residue under the same soil and AMF treatment at the 0.05 level; this is applicable for the following figures as well.

    图 2  不同处理蒺藜苜蓿地上、地下组织磷含量

    Figure 2.  Shoot and root phosphorus content of Medicago truncatula under different treatments

    图 3  不同处理的菌丝长度

    Figure 3.  Hyphal length density under different treatments

    表 1  供试土壤pH和速效磷含量

    Table 1.  pH and available phosphorus of the tested soil

    成分
    Composition
    速效磷(干土) Available
    phosphorus (dry soil)/(mg·kg−1)
    pH
    细沙 Fine sand 4~6 6.9
    粗沙 Coarse sand 5~7 6.8
    土壤 Soil 10~12 6.9
    沙 + 土混合物
    Sand + soil mix
    6~7 6.9
    下载: 导出CSV

    表 2  小麦AM真菌侵染率、茎干重、穗干重、磷含量

    Table 2.  Arbuscular mycorrhizal fungi (AMF) infection rate, stem dry weight, grain dry weight, and phosphours content of wheat

    处理 TreatmentAM真菌侵染率
    AMF infection
    rate/%
    茎干重
    Stem dry
    weight/g
    穗干重
    Grain dry
    weight/g
    磷含量
    Phosphours content/
    (mg·g−1)
    不接种 Non-mycorrhizal 0.00 ± 0.00c 3.33 ± 0.08a 3.33 ± 0.07a 0.25 ± 0.02a
    根内球囊霉 Glomus intraradices 77.00 ± 0.04a 2.18 ± 0.02d 1.98 ± 0.03d 0.21 ± 0.02a
    珍珠巨孢囊霉 Gigaspora margarita 32.00 ± 0.04b 2.94 ± 0.04b 2.38 ± 0.04b 0.25 ± 0.05a
    混合接种 Mixed 69.00 ± 0.03a 2.41 ± 0.06c 2.30 ± 0.02c 0.19 ± 0.02a
     同列不同小写字母表示AM真菌处理间差异显著(P < 0.05)。
     Different lowercase letters within the same column indicate significant differences between AMF treatments at the 0.05 level.
    下载: 导出CSV

    表 3  不同处理下土壤水稳性团聚体分布

    Table 3.  Composition of different water stable aggregates under different treatments

    处理
    Treatment
    团聚体直径 Diameter
    > 2 mm1~2 mm0.5~1 mm0.25~0.5 mm< 0.25 mm
    根内球囊霉
    Glomus intraradices
    D + R 5.44 ± 1.02abc 23.85 ± 1.02hi 31.94 ± 0.64cde 24.86 ± 0.70b 13.91 ± 2.20abc
    D 6.16 ± 1.15ab 20.03 ± 0.41j 26.99 ± 0.63g 35.73 ± 0.67a 11.10 ± 0.61bc
    ND + R 6.71 ± 1.13a 26.02 ± 1.28defgh 32.02 ± 0.45cde 25.66 ± 1.04b 9.59 ± 0.50bc
    ND 6.16 ± 0.80ab 22.56 ± 0.90ij 26.60 ± 1.04g 34.65 ± 0.78a 10.03 ± 0.85bc
    珍珠巨孢囊霉
    Gigaspora margarita
    D + R 3.34 ± 0.50bcde 28.82 ± 1.13abcde 37.51 ± 2.17a 16.11 ± 2.73e 14.22 ± 1.42ab
    D 2.13 ± 0.40de 30.67 ± 1.69ab 35.57 ± 1.95ab 18.44 ± 2.16de 13.19 ± 1.23abc
    ND + R 6.44 ± 3.24a 29.35 ± 1.71abc 31.39 ± 1.80cde 19.66 ± 1.69cde 13.16 ± 3.04abc
    ND 4.15 ± 0.75abcde 28.89 ± 0.90abcd 34.79 ± 0.99abc 18.78 ± 2.47de 13.38 ± 2.73abc
    混合接种
    Mixed
    D + R 3.12 ± 0.47cde 25.10 ± 0.91ghi 31.27 ± 1.16de 23.58 ± 0.91bc 16.94 ± 2.64a
    D 5.44 ± 0.77abc 25.61 ± 1.10fghi 33.05 ± 0.52bcde 22.56 ± 2.63bcd 13.34 ± 2.51abc
    ND + R 4.71 ± 0.74abcd 29.08 ± 0.75abcd 32.48 ± 0.76bcde 21.89 ± 1.57bcd 11.83 ± 1.90bc
    ND 4.88 ± 0.90abcd 27.06 ± 0.75cdefg 34.43 ± 0.55abcd 24.69 ± 0.60b 8.93 ± 0.41c
    不接种
    Non-mycorrhizal
    D + R 1.86 ± 0.39d 28.43 ± 1.31bcdef 32.26 ± 0.50bcde 25.51 ± 0.73b 11.95 ± 0.76abc
    D 2.63 ± 0.72cde 26.97 ± 1.38cdefgh 32.49 ± 0.92bcde 26.01 ± 1.14b 11.90 ± 1.17abc
    ND + R 1.54 ± 0.38e 31.90 ± 1.31a 30.83 ± 1.10ef 21.86 ± 0.88bcd 13.87 ± 1.47abc
    ND 1.27 ± 0.17e 25.62 ± 1.02efghi 27.41 ± 2.37fg 33.88 ± 1.58a 11.82 ± 2.11bc
     D: 干扰; ND: 不干扰; R: 秸秆覆盖; NR: 未加秸秆。不同小写字母表示同一水稳性团聚体内,不同土壤干扰、秸秆覆盖及AM真菌处理组合间存在显著差异。
     D: soil disturbance; ND: non-disturbance; R: residue application; NR: non-residue. Different lowercase letters indicate significant differences among the various soil disturbance, residue retention, and AMF combinations within the same diameter of soil water stable aggregates at the 0.05 level.
    下载: 导出CSV

    表 4  不同处理的多因素方差分析P

    Table 4.  P values of multivariate analysis of variance under different treatments

    指标
    Indicator
    土壤干扰
    Soil  
    disturbance (S)
    覆盖秸秆
    Residue 
    application (R)
    接种丛枝菌根菌
    Mycorrhizal
    (M)
    交互效应 Interactions
    S × RS × MR × MS × R × M
    茎重 Stem weight < 0.0001 0.0001 < 0.0001 0.0944 < 0.0001 0.0265 0.1160
    根重 Root weight 0.0024 0.0393 < 0.0001 0.1248 0.0021 0.3496 0.2249
    茎部磷含量 Shoot phosphorus content < 0.0001 0.0579 < 0.0001 0.6607 0.0032 0.2514 0.5005
    根部磷含量 Root phosphorus content 0.1001 0.1049 < 0.0001 0.6686 0.0217 0.4162 0.0852
    菌丝长度 Hyphal  length  density 0.6757 0.2510 < 0.0001 0.5162 0.959 0.2448 0.9725
    土壤团聚体 > 2 mm SWA > 2 mm 0.1858 0.9820 < 0.0001 0.2042 0.1775 0.2689 0.982 0
    土壤团聚体 1~2 mm SWA 1~2 mm 0.0176 0.0012 < 0.0001 0.0445 0.1616 0.0118 0.4656
    土壤团聚体 0.5~1 mm SWA 0.5~1 mm 0.0283 0.0980 < 0.0001 0.7854 0.0175 0.0006 0.0903
    土壤团聚体 0.25~0.5 mm SWA 0.25~0.5 mm 0.1897 < 0.0001 < 0.0001 0.1043 0.6526 < 0.0001 0.0044
    土壤团聚体 < 0.25 mm SWA < 0.25 mm 0.0554 0.1052 0.3255 0.6588 0.1278 0.7049 0.7834
     SWA: soil water-stable aggregate.
    下载: 导出CSV
    欧宝体育
  • <tfoot id='d2f05'></tfoot>

          <legend id='d2f05'><style id='d2f05'><dir id='d2f05'><q id='d2f05'></q></dir></style></legend>
          <i id='d2f05'><tr id='d2f05'><dt id='d2f05'><q id='d2f05'><span id='d2f05'><b id='d2f05'><form id='d2f05'><ins id='d2f05'></ins><ul id='d2f05'></ul><sub id='d2f05'></sub></form><legend id='d2f05'></legend><bdo id='d2f05'><pre id='d2f05'><center id='d2f05'></center></pre></bdo></b><th id='d2f05'></th></span></q></dt></tr></i><div id='d2f05'><tfoot id='d2f05'></tfoot><dl id='d2f05'><fieldset id='d2f05'></fieldset></dl></div>

              <bdo id='d2f05'></bdo><ul id='d2f05'></ul>

                  1. <li id='d2f05'><abbr id='d2f05'></abbr></li>
                • 加载中
                • 图(3)表(4)
                  计量
                  • PDF下载量:  128
                  • 文章访问数:  1864
                  • HTML全文浏览量:  366
                  文章相关
                  • 通讯作者:  段廷玉, duanty@webs-seo.com
                  • 收稿日期:  2020-07-11
                  • 接受日期:  2021-01-13
                  • 网络出版日期:  2021-06-25
                  • 刊出日期:  2021-07-15
                  通讯作(zuo)者: 陈斌, bchen63@163.com
                  • 1. 

                    沈阳化工大学(xue)材(cai)料科学(xue)与工程学(xue)院 沈阳 110142

                  1. 本站搜索
                  2. 百度学术搜索
                  3. 万方数据库搜索
                  4. CNKI搜索

                  /

                  返回文章
                  欧宝体育