欧宝体育

欢迎访问 欧宝体育,今天是

新疆昭(zhao)苏地区混播箭筈豌豆和施氮(dan)处(chu)理下(xia)燕麦(mai)草地的氮(dan)产量

黎松松 于辉 王宁欣 夏树淼 朱亚琼 陈雪 郑伟

引用本文: 黎松松,于辉,王宁欣,夏树淼,朱亚琼,陈雪,郑伟. 新疆昭苏地区混播箭筈豌豆和施氮处理下燕麦草地的氮产量. 欧宝体育, 2021, 38(10): 1-12 doi: shu
Citation:  LI S S, YU H, WANG N X, XIA S M, ZHU Y Q, CHEN X, ZHENG W. Effects of mixed cropping and nitrogen fertilizer on nitrogen yield of pastures in Zhaosu, Xinjiang. Pratacultural Science, 2021, 38(10): 1-12 doi: shu

新疆昭苏地区混播箭筈豌豆和施氮处理下燕麦草地的氮产量

    作者简介: 黎松松(1995-),男,陕西咸阳人,在读硕士生,研究方向为饲草学。E-mail: 940343895@qq.com; 于辉(1982-),男,陕西澄城人,副研究员,硕士,研究方向为草学及饲草学。E-mail: 410234931@qq.com
    通讯作者: 郑伟(1978-),男,湖北武汉人,教授,博士,主要从事草地生态及植物生态的教学和科研工作。E-mail: zw065@126.com
  • 基金项目: 新疆维吾尔自治区高校科研计划重点项目(XJEDU2019I013);新疆维吾尔自治区高校科研计划项目(XJEDU2018Y018);新疆维吾尔自治区创新环境建设专项(2019Q021);“国家牧草现代产业技术体系”项目(CARS-34);国家自然科学基金(31660692);“国家绿肥产业技术体系”项目(CARS-22-Z-18);国家重点研发计划“政府间国际科技创新合作”重点专项(2017YFE0109200)

摘要: 为评估混播箭筈豌豆(Vicia sativa)对燕麦(Avena sativa)草地减氮增效的贡献度,于2019年在新疆昭苏盆地进行了以施氮水平(不施氮N0;低氮N20,20 g·m−2;高氮N40,40 g·m−2)和混播比例(禾豆比: 100 ꞉ 0、75 ꞉ 25、50 ꞉ 50、25 ꞉ 75和0 ꞉ 100)为控制条件的双因素田间试验,对混播草地牧草产量、氮产量以及种间竞争格局进行分析,从氮产量的角度评估了混播箭筈豌豆对燕麦草地的减氮潜力。结果表明: 1) 燕麦产量、牧草总产量、燕麦氮产量和总氮产量随着氮水平的增加而显著增加(P < 0.05),箭筈豌豆产量及氮产量随施氮水平的增加而变化不明显;在各施氮水平下,禾豆比75 ꞉ 25处理具有较高的牧草总产量,同时在N0和N20下,还具有较高的燕麦氮产量;禾豆混播后,可获得混播优势,施氮水平对其影响不显著(P > 0.05)。2) 在N0下,箭筈豌豆相对产量、氮素竞争率和拥挤率均大于燕麦,是强竞争者,而在N20和N40下,燕麦成为强竞争者;随着禾豆比的减小,箭筈豌豆的相对产量、氮素竞争率和拥挤率呈增加趋势;箭筈豌豆的相对产量、氮素竞争率和拥挤率与燕麦产量、牧草总产量和燕麦氮产量呈负相关关系。3) 相较于单播燕麦,混播箭筈豌豆可以代替33.65%~45.15%的氮肥;在N0下,混播箭筈豌豆对燕麦草地的贡献值为0.45~1.28 g·m−2,在N40下,混播促进效果为3.75 g·m−2;施用氮肥的增产效果为3.71 g·m−2。因此,昭苏地区燕麦 + 箭筈豌豆型混播草地可以实现减氮增产,种间竞争格局的变化对混播优势及减氮增效贡献影响较小。

English

    1. [1]

      马晓凤, 刘森.  燕麦品质分析及产业化开发途径的思考[J]. 农业工程学报, 2005, (S1): 242-244.
      MA X F, LIU S.  Quality analysis of oat and its commercialization development[J]. Transactions of The Chinese Society of Agricultural Engineering, 2005, (S1): 242-244.

    2. [2]

      杨红燕. 不同品种箭筈豌豆和苕子生长规律及其替代化肥效果研究. 武汉: 华中农业大学硕士学位论文, 2012
      YANG H Y. Study on growth dynamic of different varieties of Vicia sativa L. and Vicia villosa Roth., and their effects of substitute for chemical fertilizer. Master Thesis. Wuhan: Huazhong Agricultural University, 2012.

    3. [3]

      孙杰, 巩林, 连露, 崔国文, 尹航, 张亚玲, 付佳琦.  海拔高度和混播比例对燕麦与箭筈豌豆产草量及质量的影响[J]. 欧宝体育, 2018, 35(10): 2438-2449. doi:
      SUN J, GONG L, LIAN L, CUI G W, YIN H, ZHANG Y L, FU J Q.  Effect of altitude and mixed-sowing ratio on forage production and quality of oat and common vetch[J]. Pratacultural Science, 2018, 35(10): 2438-2449. doi:

    4. [4]

      姬万忠.  高寒地区燕麦与箭筈豌豆混播增产效应的研究[J]. 中国草地学报, 2008, 30(5): 106-109.
      JI W Z.  The study on improving yield effect for mix-sowing of oat and vetch on alpine artificial grassland in Tianzhu County in Gansu Province[J]. Chinese Journal of Grassland, 2008, 30(5): 106-109.

    5. [5]

      马军, 郑伟, 朱婧蓉, 张博, 加孜依拉·哈勒克.  燕麦与箭筈豌豆混播草地不同刈割时期生产性能的对比分析[J]. 新疆农业科学, 2015, 52(8): 1547-1554.
      MA J, ZHENG W, ZHU J R, ZHANG B, Jiaziyila·Halake.  Comparative analysis of the production performance of oat-vetch mixture at different mowing stages[J]. Xinjiang Agricultural Science, 2015, 52(8): 1547-1554.

    6. [6]

      蒋海亮, 张清平, 沈禹颖.  黄土高原旱塬区间作比例对燕麦/箭筈豌豆系统的影响[J]. 欧宝体育, 2014, 31(2): 272-277. doi:
      JIANG H L, ZHANG Q P, SHEN Y Y.  Effects of intercropping ratio on autumn-sowing oats/common vetch system on the Loess Plateau[J]. Pratacultural Science, 2014, 31(2): 272-277. doi:

    7. [7]

      赵世锋, 田长叶, 陈淑萍, 董占宏.  草用燕麦品种适宜模拟放牧期的确定[J]. 华北农学报, 2005, 20(S1): 132-134. doi:
      ZHAO S F, TIAN C Y, CHEN S P, DONG Z H.  Study on appropriate mowing stages of naked oats variety as grass[J]. Acta Agriculturae Boreali-Sinica, 2005, 20(S1): 132-134. doi:

    8. [8]

      关正翾, 娜尔克孜, 朱亚琼, 郑伟, 刘岳含, 艾丽菲热.  不同混播方式下燕麦 + 箭筈豌豆混播草地的生产性能及土壤养分特征[J]. 欧宝体育, 2019, 36(3): 772-784.
      GUAN Z X, Naerkezi, ZHU Y Q, ZHENG W, LIU Y H, Ailifeire.  Effect of different sowing patterns on production performance and soilnutrients in Avena sativa + Vicia sativa mixtures[J]. Pratacultural Science, 2019, 36(3): 772-784.

    9. [9]

      关正翾, 娜尔克孜, 朱亚琼, 郑伟, 刘岳含, 艾丽菲热.  群体密度和混播群体结构对箭筈豌豆种子产量和质量的影响[J]. 欧宝体育, 2019, 36(2): 458-467.
      GUAN Z X, Naerkezi, ZHU Y Q, ZHENG W, LIU Y H, Ailifeire.  Effect of different densities and mixed community structures on seed yield and quality of Vicia sativa in Vicia sativa-Avena sativa mixtures[J]. Pratacultural Science, 2019, 36(2): 458-467.

    10. [10]

      刘文辉, 魏小星, 刘芳, 秦燕, 张永超.  高寒区施肥和混播对燕麦人工草地植物器官碳氮储量分配的影响[J]. 干旱地区农业研究, 2019, 37(4): 100-106. doi:
      LIU W H, WEI X X, LIU F, QIN Y, ZHANG Y C.  Effects of fertilization and mixed crops on carbon and nitrogen allocation of the different plant organs on oat cultivation grassland on alpine area[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 100-106. doi:

    11. [11]

      刘文辉, 张永超, 梁国玲, 马祥.  高寒区施肥和混播对燕麦栽培草地植物氮素储量的影响[J]. 欧宝体育, 2019, 36(2): 468-479.
      LIU W H, ZHANG Y C, LIANG G L, MA X.  Effect of fertilizer and legume mixture on oat cultivation and nitrogen storage in an alpine region[J]. Pratacultural Science, 2019, 36(2): 468-479.

    12. [12]

      朱亚琼, 于辉, 郑伟, 黎松松, 娜尔克孜, 刘岳含, 郝帅, 艾丽菲热.  燕麦 + 箭筈豌豆混播草地混播优势的测度与影响因素分析[J]. 草业学报, 2020, 29(1): 74-85. doi:
      ZHU Y Q, YU H, ZHENG W, LI S S, Naerkezi, LIU Y H, HAO S, Ailifeire.  Effects of different planting configurations on yield of Avena sativa and Vicia sativa mixed plantings with soyben in alpine pastures[J]. Acta Prataculturae Sinica, 2020, 29(1): 74-85. doi:

    13. [13]

      LI L, YANG S C, LI X L, ZHANG F S, CHRISTIE P.  Interspecific complementary and competitive interactions between intercropped maize and faba bean[J]. Plant and Soil, 1999, 212(2): 105-114. doi:

    14. [14]

      LI L, LI S M, SUN J H, ZHOU L L, BAO X G, ZHANG H G, ZHANG F S.  Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. PNAS, 2007, 27(104): 11192-11196.

    15. [15]

      COOK S J, RATCLIFF D.  study of the effects of root and shoot competition on the growth of green panic (Panicum maximum var. Trichglume) seedlings in an existing grassland using root exclusion tubes[J]. Journal of Applied Ecology, 1984, 21(): 971-982.

    16. [16]

      石永红, 符义坤, 李阳春, 张景雨.  半荒漠地区绿洲混播牧草群落稳定性与调控研究[J]. 草业学报, 2000, 9(3): 1-7. doi:
      SHI Y H, FU Y K, LI Y C, ZHANG J Y.  Study on community stability of mixed pastures in semi-desert area of Gansu[J]. Acta Prataculturae Sinica, 2000, 9(3): 1-7. doi:

    17. [17]

      LEDGARD S F, STEELE K W.  Biological nitrogen fixation in mixed legume/grass pastures[J]. Plant and Soil, 1992, 141(1/2): 137-153.

    18. [18]

      李强, 黄迎新, 钟荣珍, 孙海霞, 周道玮.  豆-禾混作草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制[J]. 中国农业科学, 2020, 53(13): 2647-2656. doi:
      LI Q, HUANG Y X, ZHONG R Z, SUN H X, ZHOU D W.  Influence of Medicago sativa proportion on its individual nitrogen fixation efficiency and underlying physiological mechanism in legume-gress mixture grassland[J]. Scientia Agricultura Sinica, 2020, 53(13): 2647-2656. doi:

    19. [19]

      吴巍, 赵军.  植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010, 26(13): 75-78.
      WU W, ZHAO J.  Advances on plants’ nitrogen assimilation and utilization[J]. Chinese Agricultural Science Bulletin, 2010, 26(13): 75-78.

    20. [20]

      张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风.  中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. doi:
      ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F.  Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. doi:

    21. [21]

      GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S.  Significant acidification in major chinese croplands[J]. Science, 2010, 327(): 1008-1010. doi:

    22. [22]

      ZHANG X, DAVIDSON E A, MAUZERALL D L, SEARCHINGER T D, DUMAS, P, SHEN Y.  Managing nitrogen for sustainable development[J]. Nature, 2015, 528(): 1-9. doi:

    23. [23]

      朱树秀, 杨志忠.  紫花苜蓿与老芒麦混播优势的研究[J]. 中国农业科学, 1992, 25(6): 63-68. doi:
      ZHU S X, YANG Z Z.  A study on superiorities in mixed cropping of alfalfa and Siberian wildrye[J]. Scientia Agriculture Sinica, 1992, 25(6): 63-68. doi:

    24. [24]

      肖焱波, 李隆, 张福锁.  小麦||蚕豆间作中的种间氮营养差异比较研究[J]. 植物营养与肥料报, 2003, (4): 396-400.
      XIAO Y B, LI L, ZHANG F S.  Nitrogen complementary use in intercropped wheat and faba bean[J]. Plant Nutrition and Fertilizer Science, 2003, (4): 396-400.

    25. [25]

      朱亚琼, 关正翾, 郑伟, 王祥.  混播种类和群体结构对豆禾牧草混播系统氮素利用效率的影响[J]. 草业学报, 2018, 27(10): 1-14. doi:
      ZHU Y Q, GUAN Z X, ZHENG W, WANG X.  Effects of species diversity and community structure on nitrogen use efficiency of mixed legume + grass pastures[J]. Acta Prataculturae Sinica, 2018, 27(10): 1-14. doi:

    26. [26]

      MALHI S S, ZENTNER R P, HEIER K.  Effectiveness of alfalfa in reducing fertilizer N input for optimum forage yield, protein concentration, returns and energy performance of bromegrass-alfalfa mixtures[J]. Nutrient Cycling in Agroecosystems, 2002, 62(3): 219-227. doi:

    27. [27]

      张丽, 张乃明, 张仕颖, 贾广军, 宁东卫, 岳献荣, 夏运生.  AMF和间作对作物产量和坡耕地土壤径流氮磷流失的影响[J]. 农业工程学报, 2019, 35(22): 216-224. doi:
      ZHANG L, ZHANG N M, ZHANG S Y, JIA G J, NING D W, YUE X R, XIA Y S.  Effects of AMF and intercropping on crop yield and soil nitrogen and phosphorus loss by runoff on slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 216-224. doi:

    28. [28]

      周贤玉, 唐艺玲, 王志国, 王建武.  减量施氮与间作模式对甜玉米 AMF 侵染和大豆结瘤及作物氮磷吸收的影响[J]. 中国生态农业学报, 2017, 25(8): 1139-1146.
      ZHOU X Y, TANG Y L, WANG Z G, WANG J W.  Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1139-1146.

    29. [29]

      王高峰. 昭苏马场退化草甸草地最佳改良措施的确立. 乌鲁木齐: 新疆农业大学硕士学位论文, 2007
      WANG G F. Established the optimal measures of grassland improvement for degraded mountain meadow in Zhaosu Horse Ranch. Master Thesis. Urumqi: Xinjiang Agricultural University, 2007.

    30. [30]

      杨胜. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 1999: 19-61
      YANG S. Feed Analysis and Feed Quality dDetection Technology. Beijing: China Agricultural University Press, 1999: 19-61.

    31. [31]

      WIT C T DE, BERGH J P VAN DEN.  Competition between herbage plants[J]. Netherlands Journal of Agricultural Science, 1965, 13(2): 169-178.

    32. [32]

      TAKIM F O.  Advantages of maize-cowpea intercropping over sole cropping through competition indices[J]. Journal of Agriculture and Biodiversity Research, 2012, 1(4): 53-59.

    33. [33]

      王平, 周道玮, 张宝田.  禾-豆混播草地种间竞争与共存[J]. 生态学报, 2009, 29(5): 2560-2567. doi:
      WANG P, ZHOU D W, ZHANG B T.  Coexistence and inter-specific competition in grass-legume mixture[J]. Acta Ecologica Sinica, 2009, 29(5): 2560-2567. doi:

    34. [34]

      蒋倩红, 陆志峰, 赵海燕, 郭俊杰, 刘文波, 凌宁, 郭世伟.  长江中下游冬油菜产区有机无机肥配施下减氮增效潜力分析[J]. 中国农业科学, 2020, 53(14): 2907-2918. doi:
      JIANG Q H, LU Z F, ZHAO H Y, GUO J J, LIU W B, LING N, GUO S W.  Potential analysis of reducing chemical nitrogen inputs while increasing efficiency by organic-inorganic fertilization in winter rapeseed producing areas of the middle and lower reaches of the Yangtze River[J]. Scientia Agricultura Sinica, 2020, 53(14): 2907-2918. doi:

    35. [35]

      柴强, 胡发龙, 陈桂平.  禾豆间作氮素高效利用机理及农艺调控途径研究进展[J]. 中国生态农业学报, 2017, 25(1): 19-26.
      CHAI Q, HU F L, CHEN G P.  Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 19-26.

    36. [36]

      NYFELER D, HUGUENIN-ELIE O, SUTER M, FROSSARD E, CONNOLLY J, LÜ SCHER A.  Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding[J]. Journal of Applied Ecology, 2009, 46(): 683-691. doi:

    37. [37]

      张海星, 常生华, 贾倩民, Shahzad Ali, 张程, 刘永杰, 李红, 侯扶江.  禾豆间作与施氮对河西地区青贮玉米产量及水氮利用的影响[J]. 中国土壤与肥料, 2021, (3): 51-62.
      ZHANG H X, CHANG S H, JIA Q M, SHAHZZAD A, ZHANG C, LIU Y J, LI H, HOU F J.  Effects of maize-legume intercropping and nitrogen application on yield, water and nitrogen utilization of silage maize in Hexi area[J]. Soil and Fertilizer Sciences in China, 2021, (3): 51-62.

    38. [38]

      HAUGGAARD-NIELSEN H, JENSEN E S.  Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability[J]. Field Crop Research, 2001, 72(3): 185-196. doi:

    39. [39]

      YIN W, YU A Z, CHAI Q, HU F L, FENG F X, GAN Y T.  Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%[J]. Agronomy for Sustainable Development, 2015, 35(2): 815-825. doi:

    40. [40]

      刘颖, 王建国, 郭峰, 唐朝辉, 杨莎, 耿耘, 孟静静, 李新国, 张佳蕾, 万书波.  玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994-1001.
      LIU Y, WANG J G, GUO F, TANG C H, YANG S, GENG Y, MENG J J, LI X G, ZHANG J L, WAN S B.  Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994-1001.

    41. [41]

      任文, 张志新, 蔺昶兴, 杨倩, 沈禹颖.  混播比例对高寒草地红豆草-垂穗披碱草混播群落生物量分配与竞争的影响[J]. 欧宝体育, 2020, 37(10): 2035-2048. doi:
      REN W, ZHANG Z X, LIN C X, YANG Q, SHEN Y Y.  Effects of mixed seeding ratio on biomass allocation and competition of Onobrychis viciifolia and Elymus nutans under cold conditions in the Tianzhu alpine region[J]. Pratacultural Science, 2020, 37(10): 2035-2048. doi:

    42. [42]

      WILSON S D, TILMAN D.  Competitive responses of eight old-field plant species in four environments[J]. Ecology, 1995, 76(4): 1169-1180. doi:

    43. [43]

      CAHILL J F.  What evidence is necessary in studies which separate root and shoot competition along productivity gradients?[J]. Journal of Ecology, 2002, 90(1): 201-205. doi:

    44. [44]

      GRIME J P. Plant strategies, Vegetation Processes, and Ecosystem Properties. Chichester: Wiley, 2001.

    45. [45]

      任家兵, 张梦瑶, 肖靖秀, 郑毅, 汤利.  小麦||蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文), 2020, 28(12): 1890-1900.
      REN J B, ZHANG M Y, XIAO J X, ZHENG Y, TANG L.  Wheat and faba bean intercropping to improve yield and response to nitrogen[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890-1900.

    46. [46]

      LI L, SUN J H, ZHANG F S, GUO T W, BAO X G, SMITH F A, SMITH S E.  Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2): 280-290. doi:

    47. [47]

      LI L, LI S M, SUN J H, ZHOU L L, BAO X G, ZHANG H G, ZHANG F S.  Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192-11196. doi:

    1. [1]

      关正翾娜尔克孜朱亚琼郑伟刘岳含艾丽菲热 . 群体密度和混播群体结构对箭筈豌豆种子产量和质量的影响. 欧宝体育, doi: 

    2. [2]

      关正翾娜尔克孜朱亚琼郑伟刘岳含艾丽菲热 . 不同混播方式下燕麦+箭筈豌豆混播草地的生产性能及土壤养分特征. 欧宝体育, doi: 

    3. [3]

      许瑞轩赵海明刘贵波张英俊曲毅 . 不同植物生长延缓剂和除草剂对苜蓿/玉米套作系统产量和种间竞争的影响. 欧宝体育, doi: 

    4. [4]

      马晓东孙金金汪鹏斌赵一珊宋美娟鱼小军 . 青海果洛高寒地区燕麦和小黑麦最佳混播比例筛选. 欧宝体育, doi: 

    5. [5]

      周雅欣乐祥鹏魏臻武江舟闫天芳 . 江淮地区冬闲田豆禾牧草混播生产模式的发展前景. 欧宝体育, doi: 

    6. [6]

      张永亮骆秀梅吴明浩潘东 . 科尔沁沙地苜蓿-禾草混播组合对播种当年牧草生产性能的影响. 欧宝体育, doi: 

    7. [7]

      史志强裴亚斌徐强刘汉成田新会杜文华 . 甘南高寒牧区甘农2号小黑麦与箭筈豌豆的混播效果. 欧宝体育, doi: 

    8. [8]

      王小军曹文侠王世林李小龙李文刘玉祯王辛有 . 河西走廊多年生豆禾混播对牧草产量和品质的影响. 欧宝体育, doi: 

    9. [9]

      苟智强赵桂琴刘欢柴继宽曾亮许兴泽闫车太黎蓉 . 混配除草剂对燕麦田杂草的防效及燕麦产量的影响. 欧宝体育, doi: 

    10. [10]

      朱亚琼郑伟王祥关正翾刘美君 . 混播方式对无芒雀麦+红豆草混播草地植物生长效率及混播效应的影响. 欧宝体育, doi: 

    11. [11]

      陈 吉王 京高志娟郭亚力吴爱姣徐炳成 . 黄土丘陵区白羊草与达乌里胡枝子混播草地土壤呼吸日变化特征. 欧宝体育, doi: 

    12. [12]

      韩文斌任胜茂罗阳春马雪清谢树果曹卫东 . 播期和播量对橘园间作下山黧豆产量及农艺性状的影响. 欧宝体育, doi: 

    13. [13]

      李满有蒙向武王斌李小云沈笑天曹立娟兰剑 . 燕麦–豆草混播组合对草地生产性能的影响. 欧宝体育, doi: 

    14. [14]

      王晔石雅琪刘呈刘雅然南张杰张秋芝潘金豹 . 水氮互作对青贮玉米产量和青贮品质的影响. 欧宝体育, doi: 

    15. [15]

      朱林郑淑欣许兴侯志军 . 宁夏中部灌水量对豆━禾牧草混播的影响. 欧宝体育, doi: 

    16. [16]

      陶梦苏德荣吕世海王铁梅陈俊翰 . 氮肥对库布齐沙地柳枝稷产量、氮肥利用率及土壤硝态氮残留的影响. 欧宝体育, doi: 

    17. [17]

      陈菲穆麟文昭竹张志飞魏仲珊 . 洞庭湖区不同品种紫花苜蓿的混播效应. 欧宝体育, doi: 

    18. [18]

      卢尧尧张静李耀明刘荣荣代心灵林长存纪宝明 . 土著丛枝菌根真菌对垂穗披碱草和冷地早熟禾生长及竞争的影响. 欧宝体育, doi: 

    19. [19]

      徐丽君杨桂霞辛晓平乌恩奇青格勒朱树声董 民 . 不同混播模式下草地营养成分综合评价. 欧宝体育, doi: 

    20. [20]

      张强强景亚平杨 雪蒋烈戈李福星 . 塔尔巴克台山东段山区混播草地研究初报. 欧宝体育, doi: 

  • 欧宝体育

    图 1  混播箭筈豌豆对燕麦氮产量的贡献模型

    Figure 1.  Contribution model of mixed planting Vicia sativa to nitrogen yield of Avena sativa population

    图上(shang)数据(ju)均(jun)为平均(jun)值(zhi)。

    The data on the graph are average values.

    表 1  豆禾混播草地的混播比例及各组分播量

    Table 1.  Mixed sowing ratios and sowing quantity of legume-grass mixtures

    禾豆混播比例
    Mixed rations of
    grass to legume
    混播组分播量
    Sowing quantity of mixed species/(kg·hm−2)
    箭筈豌豆
    Vicia sativa
    燕麦
    Avena sativa
    100 ꞉ 0 0 180
    75 ꞉ 25 30 135
    50 ꞉ 50 60 90
    25 ꞉ 75 90 45
    0 ꞉ 100 120 0
    下载: 导出CSV

    表 2  不同氮水平和混播比例对混播草地牧草产量、氮产量影响

    Table 2.  The effects of different nitrogen levels and mixing ratios on the forage yield and nitrogen yield of mixed grassland

    氮水平
    N level
    禾豆混播比例
    Mixed ratios of
    grass to legume
    产量 Yield/(g·m−2)氮产量 N yield/(g·m−2)
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    总和
    Total
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    总和
    Total
    N0 100 ꞉ 0 368.69 ± 52.02a 368.69 ± 52.02a 6.41 ± 1.48a 6.41 ± 1.48a
    75 ꞉ 25 355.35 ± 41.02a 34.81 ± 6.48d 390.16 ± 35.88a 6.84 ± 2.20a 0.85 ± 0.33c 7.69 ± 2.04a
    50 ꞉ 50 125.08 ± 14.82b 124.06 ± 15.75c 249.13 ± 26.59b 1.96 ± 0.31b 4.50 ± 0.52b 6.46 ± 0.70a
    25 ꞉ 75 93.04 ± 4.65b 158.59 ± 11.47b 251.63 ± 11.99b 1.39 ± 0.11b 5.79 ± 0.49a 7.18 ± 0.42a
    0 ꞉ 100 201.93 ± 14.21a 201.93 ± 14.21c 6.63 ± 1.16a 6.63 ± 1.16a
    均值 Mean 243.04 ± 142.31C 129.85 ± 64.05A 298.31 ± 87.12C 4.25 ± 2.92C 4.44 ± 2.35A 6.96 ± 1.26C
    N20 100 ꞉ 0 394.89 ± 34.90a 394.89 ± 34.90ab 6.89 ± 0.52ab 6.89 ± 0.52b
    75 ꞉ 25 365.62 ± 13.47a 43.84 ± 3.48c 409.46 ± 13.85a 8.07 ± 1.31a 1.38 ± 0.09c 9.44 ± 1.39a
    50 ꞉ 50 298.47 ± 23.62b 74.91 ± 7.35b 373.38 ± 23.48b 5.77 ± 0.99b 2.36 ± 0.52bc 8.14 ± 0.53ab
    25 ꞉ 75 318.53 ± 13.69b 96.10 ± 8.19b 414.63 ± 9.11a 6.61 ± 2.51ab 3.13 ± 0.44b 9.74 ± 2.68a
    0 ꞉ 100 296.25 ± 33.96a 296.25 ± 33.96c 8.83 ± 1.66a 8.83 ± 1.66ab
    均值 Mean 344.38 ± 44.41B 127.77 ± 102.92A 377.72 ± 49.75B 6.83 ± 1.63B 3.93 ± 3.09B 8.61 ± 1.77B
    N40 100 ꞉ 0 483.15 ± 33.42a 483.15 ± 33.42a 10.52 ± 1.69a 10.52 ± 1.69bc
    75 ꞉ 25 425.83 ± 24.41a 43.85 ± 9.79d 469.68 ± 28.89a 10.37 ± 1.31a 1.55 ± 0.35c 11.92 ± 1.42b
    50 ꞉ 50 331.29 ± 63.78b 68.48 ± 9.72c 399.77 ± 62.46b 9.54 ± 1.85a 2.65 ± 0.40b 12.19 ± 1.79ab
    25 ꞉ 75 350.28 ± 54.63b 89.89 ± 14.64b 440.17 ± 56.89ab 11.34 ± 2.07a 2.93 ± 0.46b 14.27 ± 2.07a
    0 ꞉ 100 258.61 ± 23.96a 258.61 ± 23.96c 9.49 ± 0.71a 9.49 ± 0.71c
    均值 Mean 394.64 ± 71.11A 115.21 ± 87.75B 407.87 ± 89.37A 10.44 ± 1.74A 4.15 ± 3.23AB 11.68 ± 2.21A
    氮水平 N level (N) ** ** * * 0.067 **
    混播比例 Mixed ratios (M) * ** ** ** ** **
    氮水平 × 混播比例 N × M * ** * ** ** *
     不同小写字母表示同一氮水平下各混播比例处理间差异显著(P < 0.05);不同大写字母表示不同氮水平(均值)间差异显著(P < 0.05);“−”表示该项不存在,*、**分别表示双因素方差分析差异来源显著(P < 0.05)、极显著(P < 0.01);NS表示差异不显著;表3同。
     Different lowercase letters indicate significant differences between the treatments under the same nitrogen level at the 0.05 level. Different capital letters indicate significant differences between different nitrogen levels (mean values) at the 0.05; "−" indicating that the item does not exist, * and ** represent significant and extremely significantat the 0.05 and 0.01 levels, respectively, in the two-way analysis of variance; NS represents no significant sources of difference; this is applicable for the Table 3 as well.
    下载: 导出CSV

    表 3  不同氮水平和混播比例对混播草地牧草产量、氮产量影响

    Table 3.  The effects of different nitrogen levels and mixing ratios on the forage yield and nitrogen yield of mixed grassland

    氮水平
    N level
    禾豆混播比例
    Mixed ratios
    土地当量比
    Land equivalent ratio
    氮素竞争率
    N competitive ratio
    拥挤率
    K relative crowding coefficient
    相对产量
    Relative yield
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    总和
    Total
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    N0 75 ꞉ 25 1.07 ± 0.12a 0.17 ± 0.03c 1.24 ± 0.10a 3.21 ± 2.24a 0.41 ± 0.21b 0.62 ± 1.26a 0.04 ± 0.01c 1.20 ± 0.20a 0.69 ± 0.11c
    50 ꞉ 50 0.38 ± 0.04b 0.62 ± 0.07b 0.99 ± 0.08b 0.44 ± 0.07b 2.34 ± 0.41a 0.12 ± 0.04b 0.42 ± 0.11b 0.64 ± 0.15b 1.23 ± 0.14a
    25 ꞉ 75 0.28 ± 0.01b 0.79 ± 0.05a 1.07 ± 0.04b 0.08 ± 0.01b 2.57 ± 0.21a 0.06 ± 0.01b 0.72 ± 0.17a 0.95 ± 0.15b 1.05 ± 0.06b
    均值 Mean 0.57 ± 0.37C 0.52 ± 0.27A 1.10 ± 0.13A 1.24 ± 1.88B 2.11 ± 0.84A 0.27 ± 0.72B 0.39 ± 0.31A 0.93 ± 0.28C 0.99 ± 0.26A
    N20 75 ꞉ 25 1.00 ± 0.04a 0.15 ± 0.02c 1.15 ± 0.05a 1.94 ± 0.22a 0.52 ± 0.07b 2.21 ± 0.99a 0.03 ± 0.01b 1.24 ± 0.13b 0.60 ± 0.07a
    50 ꞉ 50 0.82 ± 0.06b 0.26 ± 0.04b 1.07 ± 0.05b 2.62 ± 1.04a 0.43 ± 0.16b 0.83 ± 0.24b 0.09 ± 0.02a 1.52 ± 0.11b 0.51 ± 0.08ab
    25 ꞉ 75 0.87 ± 0.04b 0.33 ± 0.02a 1.20 ± 0.04a 0.70 ± 0.24b 1.56 ± 0.53a 1.04 ± 0.77b 0.09 ± 0.01a 3.25 ± 0.31a 0.44 ± 0.03b
    均值 Mean 0.90 ± 0.09A 0.24 ± 0.08B 1.14 ± 0.07A 1.76 ± 1.01AB 0.84 ± 0.61B 1.36 ± 0.93A 0.07 ± 0.03B 2.00 ± 0.94A 0.51 ± 0.09B
    N40 75 ꞉ 25 0.95 ± 0.05a 0.17 ± 0.05c 1.12 ± 0.08a 2.32 ± 0.67b 0.45 ± 0.10b 1.80 ± 1.17a 0.04 ± 0.01b 1.18 ± 0.07b 0.69 ± 0.19a
    50 ꞉ 50 0.74 ± 0.14b 0.27 ± 0.04b 1.01 ± 0.12a 3.71 ± 1.08a 0.29 ± 0.08b 0.66 ± 0.35b 0.09 ± 0.02a 1.37 ± 0.26b 0.53 ± 0.08ab
    25 ꞉ 75 0.78 ± 0.12b 0.35 ± 0.05a 1.13 ± 0.15a 1.33 ± 0.36b 0.80 ± 0.21a 0.59 ± 0.30b 0.10 ± 0.02a 2.91 ± 0.46a 0.46 ± 0.06b
    均值 Mean 0.82 ± 0.14B 0.26 ± 0.09B 1.09 ± 0.13A 2.45 ± 1.23A 0.51 ± 0.26B 1.02 ± 0.88A 0.08 ± 0.03B 1.82 ± 0.85B 0.56 ± 0.15B
    氮水平 N level (N) * * NS * ** ** * ** **
    混播比例 Mixed ratios (M) * * ** ** ** ** * ** *
    氮水平 × 混播比例 N × M * * NS ** ** NS * NS **
    下载: 导出CSV

    表 4  燕麦 + 箭筈豌豆混播草地产量、氮产量与混播优势、种间竞争关系的相关性分析

    Table 4.  Correlation analysis between yield, N yield, and interspecific competition; mixed sowing pattern advantage of mixed grassland with Avena sativa + Vicia sativa

    指标
    Index
    土地当量比
    Land equivalent ratio
    氮素竞争率
    N Competitive ratio
    拥挤率
    K Relative crowding coefficient
    相对产量
    Relative yield
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    总和
    Total
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    燕麦
    Avena sativa
    箭筈豌豆
    Vicia sativa
    燕麦产量 Grass yield 0.263 −0.267 0.131 0.224 −0.497** −0.160 −0.396* 0.280 −0.177
    箭筈豌豆产量 Legume yield 0.227 −0.192 0.172 0.109 0.054 0.169 −0.127 0.178 −0.408*
    总产量 Total yield 0.170 −0.163 0.099 0.089 −0.344* −0.080 −0.285 0.266 −0.072
    燕麦氮产量 Grass N yield 0.249 −0.253 0.124 0.255 −0.471** −0.065 −0.355* 0.366* −0.348*
    箭筈豌豆氮产量 Legume N yield 0.215 −0.173 0.183 0.063 0.105 0.191 −0.099 0.145 −0.381*
    总氮产量 Total N yield 0.144 −0.185 −0.004 0.168 −0.262 0.132 −0.239 0.148 −0.179
    下载: 导出CSV

    表 5  混播箭筈豌豆对燕麦氮产量的贡献模型

    Table 5.  Contribution model of mixed planting Vicia sativa to nitrogen yield of Avena sativa population

    禾豆混播比例
    Mixed ratios
    基础地力
    Basic soil
    fertility/(g·m −2)
    化肥贡献
    Fertilizer
    contribution/(g·m −2)
    混播贡献
    Mixed fertilizer
    contribution/(g·m −2)
    混播促进效果
    Promoting efficiency
    by mixed/(g·m −2)
    混播减氮潜力
    Mixed N reduction
    potential/%
    75 : 25 6.41 10.52 1.28 1.40 45.15
    50 : 50 6.41 10.52 0.45 1.67 33.65
    25 : 75 6.41 10.52 0.77 3.75 33.95
    下载: 导出CSV
    欧宝体育
  • <tr id='nzy0m'><strong id='nzy0m'></strong><small id='nzy0m'></small><button id='nzy0m'></button><li id='nzy0m'><noscript id='nzy0m'><big id='nzy0m'></big><dt id='nzy0m'></dt></noscript></li></tr><ol id='nzy0m'><option id='nzy0m'><table id='nzy0m'><blockquote id='nzy0m'><tbody id='nzy0m'></tbody></blockquote></table></option></ol><u id='nzy0m'></u><kbd id='nzy0m'><kbd id='nzy0m'></kbd></kbd>

      <code id='nzy0m'><strong id='nzy0m'></strong></code>

      <fieldset id='nzy0m'></fieldset>
            <span id='nzy0m'></span>

                <ins id='nzy0m'></ins>
                    <acronym id='nzy0m'><em id='nzy0m'></em><td id='nzy0m'><div id='nzy0m'></div></td></acronym><address id='nzy0m'><big id='nzy0m'><big id='nzy0m'></big><legend id='nzy0m'></legend></big></address>

                      <i id='nzy0m'><div id='nzy0m'><ins id='nzy0m'></ins></div></i>
                      <i id='nzy0m'></i>
                        • <dl id='nzy0m'></dl>
                        • 加载中
                        • WeChat 点击查看大(da)图
                          图(1)表(5)
                          计量
                          • PDF下载量:  18
                          • 文章访问数:  381
                          • HTML全文浏览量:  150
                          文章相关
                          • 通讯作者:  郑伟, zw065@126.com
                          • 收稿日期:  2020-12-20
                          • 接受日期:  2021-06-16
                          • 网络出版日期:  2021-08-13
                          通讯作者: 陈斌, bchen63@163.com
                          • 1. 

                            沈(shen)阳化工大学材(cai)料科学与工程(cheng)学院 沈(shen)阳 110142

                          1. 本站搜索
                          2. 百度学术搜索
                          3. 万方数据库搜索
                          4. CNKI搜索

                          /

                          返回文章
                          欧宝体育