欧宝体育

欢迎访问 欧宝体育,今天是

ZxNHX1-VP1-1ZxABCG11转基因紫花苜蓿在田间条件下的生长发育及饲用品质分析

林杉 刘林波 高鲤 邓育轩 赵一颖 马春莲 包爱科 王锁民

引用本文: 林杉,刘林波,高鲤,邓育轩,赵一颖,马春莲,包爱科,王锁民. 和转基因紫花苜蓿在田间条件下的生长发育及饲用品质分析. 欧宝体育, 2021, 38(0): 1-11 doi: shu
Citation:  LIN S, LIU L B, GAO L, DENG Y X, ZHAO Y Y, MA C L, BAO A K, WANG S M. Assessment of growth characteristics and forage quality of and transgenic alfalfa under field conditions. Pratacultural Science, 2021, 38(0): 1-11 doi: shu

ZxNHX1-VP1-1ZxABCG11转基因紫花苜蓿在田间条件下的生长发育及饲用品质分析

    作者简介: 林杉(1996-),女,黑龙江庆安人,在读硕士生,研究方向为紫花苜蓿的遗传改良。E-mail: linsh18@webs-seo.com
    通讯作者: 王锁民(1965-),男,甘肃宁县人,教授,博士,研究方向为牧草逆境生理与分子生物学。E-mail: smwang@webs-seo.com
  • 基金项目: 国家自然科学基金重点项目(31730093);国家自然科学基金面上项目(31971405)

摘要: 为探究霸王(Zygophyllum xanthoxylum)液泡膜Na+区域化功能基因ZxNHX1和H+-焦磷酸酶(H+-pyrophosphatase, H+-PPase)编码基因ZxVP1-1及角质层蜡质转运基因ZxABCG11对紫花苜蓿(Medicago sativa)“新疆大叶”生长发育及饲用品质的影响,本研究测定了野生型及ZxNHX1-VP1-1ZxABCG11转基因紫花苜蓿在田间条件下的生长发育和饲用品质相关指标。结果显示: 1) ZxNHX1-VP1-1转基因苜蓿的叶面积和干草产量分别比野生型高56.4%和74.5%,净光合速率和水分利用率均显著高于野生型(P<0.05),花期比野生型延长19 d;2) ZxABCG11转基因苜蓿的叶面积和茎粗均显著大于野生型(P<0.05),净光合速率和水分利用率分别比野生型高81.7%和80.5%,花期比野生型延长38 d;3) ZxNHX1-VP1-1转基因苜蓿的中性洗涤纤维(neutral detergent fiber, NDF)、酸性洗涤纤维(acid detergent fiber, ADF)和酸性洗涤木质素(acid detergent lignin, ADL)含量显著低于野生型(P<0.05),相对饲用价值比野生型提高了35.4%。本研究表明,霸王ZxNHX1ZxVP1-1的超表达提高了紫花苜蓿的生物量和饲用品质,并延长了开花时间;ZxABCG11的超表达对紫花苜蓿叶面积、茎粗和光合能力产生了影响,花期相比野生型有所延长。

English

    1. [1]

      潘霞, 高永, 刘博, 任昱.  苜蓿产业发展现状及前景展望[J]. 绿色科技, 2017, 13(4): 104-107.
      PAN X, GAO Y, LIU B, REN Y.  Development status and prospect of alfalfa industry[J]. Journal of Green Science and Technology, 2017, 13(4): 104-107.

    2. [2]

      KANG P, BAO A K, KUMAR T, PAN Y Q, BAO Z L T, WANG F, WANG S M.  Assessment of stress tolerance, productivity, and forage quality in T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum[J]. Frontiers in Plant Science, 2016, (7): 10-11.

    3. [3]

      卢欣石.  苜蓿产业十年发展助推奶业提质升级[J]. 中国乳业, 2019, 208(4): 10-12.
      LU X S.  The ten-year development of alfalfa industry promoted the quality upgrading of dairy industry[J]. China Dairy, 2019, 208(4): 10-12.

    4. [4]

      BAO A K, DU B Q, TOUIL L, KANG P, WANG Q L, WANG S M.  Co-expression of tonoplast cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions[J]. Plant Biotechnology Journal, 2016, 14(3): 964-975. doi:

    5. [5]

      边荣荣, 孙兆军, 李向辉, 李惠军.  西北盐碱地改良利用技术研究现状及展望[J]. 宁夏工程技术, 2016, 15(4): 404-408. doi:
      BIAN R R, SUN Z J, LI X H, LI H J.  The present situation and prospect of the technology of saline-alkali land improvement in northwest China[J]. Ningxia Engineering Technology, 2016, 15(4): 404-408. doi:

    6. [6]

      SMITH K F, REED K F M, FOOT J Z.  An assessment of the relative importance of specific traits for the genetic improvement of nutritive value in dairy pasture[J]. Grass and Forage Science, 1997, 52(2): 167-175. doi:

    7. [7]

      李艳琴, 徐敏云, 王振海, 于海良, 邵长虹.  牧草品质评价研究进展[J]. 安徽农业科学, 2008, 36(11): 4485-4486, 4546. doi:
      LI Y Q, XU M Y, WANG Z H, YU H L, SHAO C H.  Research advances in evaluation of forage quality[J]. Journal of Anhui Agricultural Sciences, 2008, 36(11): 4485-4486, 4546. doi:

    8. [8]

      AVCI M, CINAR S, YUCEL C, INAL I.  Evaluation of some selected alfalfa (Medicago sativa L.) lines for herbage yield and forage quality[J]. Journal of Food Agriculture and Environment, 2010, 8(3): 545-549.

    9. [9]

      SANZ-SAEZ A, ERICE G, AGUIRREOLEA J, MUNOZ F, SANCHEZ-DIAZ M, JUAN J.  Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with sinorhizobium meliloti strain[J]. Journal of Plant Physiology, 2012, 169(8): 782-788. doi:

    10. [10]

      ROHWEDER D A, BAMES R F, JORGENSEN N.  Proposed hay grading standards based on laboratory analyses for evaluating quality[J]. Journal of Animal Science, 1978, 47(3): 747-759. doi:

    11. [11]

      GUO D Q, CHEN F, WHEELER J, WINDER J, SELMAN S, PETERSON M, DIXON R A.  Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases[J]. Transgenic Research, 2001, 10(5): 457-464. doi:

    12. [12]

      GALLEGO-GIRALDO L, BHATTARAI K, PISLARIU C I, NAKASHIMA J, JIKUMARU Y, KAMIYA Y, UDVARDI M K, MONTEROS M J, DIXON R A.  Lignin modification leads to increased nodule numbers in alfalfa[J]. Plant Physiology, 2014, 164(3): 1139-1150. doi:

    13. [13]

      GALLEGO-GIRALDO L, JIKUMARU Y, KAMIYA Y, TANG Y H, DIXON R A.  Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.)[J]. New Phytologist, 2011, 190(3): 627-639. doi:

    14. [14]

      WANG S M, WAN C G, WANG Y R, CHEN H, ZHOU Z Y, FU H, SOSEBEE R E.  The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56(3): 525-539. doi:

    15. [15]

      WU G Q, XI J J, WANG Q, BAO A K, MA Q, ZHANG J L, WANG S M.  The ZxNHX gene encoding tonoplast Na(+)/H(+) antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought[J]. Journal of Plant Physiology, 2011, 168(8): 758-767. doi:

    16. [16]

      MA Q, YUE L J, ZHANG J L, WU G Q, BAO A K, WANG S M.  Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum[J]. Tree Physiology, 2012, 32(1): 4-13. doi:

    17. [17]

      YUE L J, LI S X, MA Q, ZHOU X R, WU G Q, BAO A K, ZHANG J L, WANG S M.  NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum[J]. Journal of Arid Environments, 2012, 87(12): 153-160.

    18. [18]

      LIN S M, TSAI J Y, HSIAO C D, HUNAG Y Z, CHIU C L, LIU M H, TUNG J Y, LIU T H, PAN R L.  Crystal structure of a membrane-embedded H+-translocating pyrophosphatase[J]. Nature, 2012, 484(7394): 399-403. doi:

    19. [19]

      SEGAMI S, MAKINO S, MIYAKE A, MAESHIMA M.  Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: Artifactual bulbs and native intravacuolar spherical structures[J]. Plant Cell, 2014, 26(8): 3416-3434. doi:

    20. [20]

      GAXIOLA R A, PALMGREN M G, SCHUMACHER K.  Plant proton pumps[J]. Febs Letters, 2007, 581(12): 2204-2214. doi:

    21. [21]

      LI J S, YANG H B, PEER W A, RICHTER G, BLAKESLEE J, BANDYOPADHYAY A, TITAPIWANTAKUN B, UNDURRAGA S, KHODAKOVSKAYA M, RICHARDS E, KRIZEK B, MURPHY A S, GILROY S, GAXIOLA R.  Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development[J]. Science, 2005, 310(5745): 121-125. doi:

    22. [22]

      包爱科. 拟南芥液泡膜H+-焦磷酸酶基因AVP1改良紫花苜蓿(Medicago sativa L.)抗逆性的研究. 兰州: 兰州大学博士学位论文, 2009.
      BAO A K. Improved the stress tolerance in alfalfa through introducing an tonoplast H+-pyrophosphatase gene AVP1 from Arabidopsis thaliana. PhD Thesis. Lanzhou: Lanzhou University, 2009.

    23. [23]

      田野, 张婧, 未丽, 王锁民.  霸王ZxABCG11基因的克隆及其在逆境下的表达分析[J]. 中国科技论文在线, 2016, (6): 934-.
      TIAN Y, ZHANG J, WEI L, WANG S M.  Cloning and expression analysis of the cuticular lipid transporter gene ZxABCG11 responding to abiotic stress[J]. Sciencepaper Online, 2016, (6): 934-.

    24. [24]

      康鹏. 共表达霸王ZxNHXZxVP1-1的T1代紫花苜蓿综合性状及品质分析. 兰州: 兰州大学博士学位论文, 2018.
      KANG P. The analysis of comprehensive traits and quality in T1 generation alfalfa co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. PhD Thesis. Lanzhou: Lanzhou University, 2018.

    25. [25]

      KIYOTOSHI T.  Stress-induced flowering: The third category of flowering response[J]. Journal of Experimental Botany, 2016, 67(17): 4925-. doi:

    26. [26]

      EMAMI H, KEMPKEN F.  PRECOCIOUS1 (POCO1), a mitochondrial pentatricopeptide repeat protein affects flowering time in Arabidopsis thaliana[J]. The Plant Journal, 2019, 100(2): 265-278. doi:

    27. [27]

      CHO L H, YOON J, AN G.  The control of flowering time by environmental factors[J]. The Plant Journal, 2017, 90(4): 708-719. doi:

    28. [28]

      PIEPER R, TOME F, KORFF M V. Flowering Locus T4 (HvFT4) Delays Flowering and Decreases Floret Fertilitty in Barley. Oxford: Oxford University Press, 2020.

    29. [29]

      TANAKA H, DHONUKSHE P, BREWER P B, FRIML J.  Spatiotemporal asymmetric auxin distribution: A means to coordinate plant development[J]. Cellular and Molecular Life Sciences, 2006, 63(23): 2738-2754. doi:

    30. [30]

      CHEN Y F, ZHAO Y D.  A role for auxin in flower development[J]. Journal of Integrative Plant Biology, 2007, 49(1): 99-104. doi:

    31. [31]

      JALIGOT E, RIVAL A, BEULE T, DUSSERT S, VERDEIL J L.  Somaclonal variation in oil palm (Elaeis guineensis Jacq.): The DNA methylation hypothesis[J]. Plant Cell Reports, 2000, 19(7): 684-690. doi:

    32. [32]

      BAO S J, HUA C M, SHEN L S, YU H.  New insights into gibberellin signaling in regulating flowering in Arabidopsis[J]. Journal of Integrative Plant Biology, 2020, 62(1): 120-133.

    33. [33]

      SCHILLING R K, TESTER M, MARSCHNER P, ROY S J, PLETT D C.  AVP1: One protein, many roles[J]. Trends in Plant Science, 2017, 22(2): 154-162. doi:

    34. [34]

      LI J S, YANG H B, PEER W A, RICHTER G, BLAKESLEE J, BANDYOPADHYAY A, TITAPIWANTAKUN B, SOLEDAD U, KHODAKOVSKAYA M, RICHARDS E L, KRIZEK B, MURPHYA S, GILROY S, GAXIOLA R.  Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development[J]. Science, 2005, 310(5745): 121-125. doi:

    35. [35]

      GONZALEZ A M, TAYLOR W M, JOHANSON C E, KING J C, LEADBEATER W E, BAIRD A.  Co-localization and regulation of basic fibroblast growth factor and arginine vasopressin in neuroendocrine cells of the rat and human brain[J]. Cerebrospinal Fluid Research, 2010, 7(1): 1-11. doi:

    36. [36]

      BIRD D, BEISSON F, BRIGHAM A, SHIN J, GREER S, JETTER R, KUNST L, WU X M, YEPHREMOV A, SAMUELS L.  Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion[J]. The Plant Journal, 2010, 52(3): 485-498.

    37. [37]

      LUO B, XUE X Y, HU W L, WANG L J, CHEN X Y.  An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion[J]. Plant Cell Physiology, 2007, 48(17): 1790-1802.

    38. [38]

      PANIKASHVILI D, SAVALDI-GOLDSTEIN S, MANDEL T, YIFHAR T, FRANKE R B, HOFER R, SCHREIBER L, CHORY J, AHARPNI A.  The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion[J]. Plant Physiology, 2007, 145(4): 1345-1360. doi:

    39. [39]

      田野. 霸王ZxABCG11的功能验证及其对紫花苜蓿的遗传转化. 兰州: 兰州大学硕士学位论文, 2017.
      TIAN Y. Functional verification of ZxABCG11 from Zygophyllum xanthoxylum and genetic transfomation to alfalfa (Medicago sativa L.). Master Thesis. Lanzhou: Lanzhou University, 2017.

    40. [40]

      ZHANG T J, CHAO Y H, KANG J M, DING W, YANG Q C.  Molecular cloning and characterization of a gene regulating flowering time from alfalfa (Medicago sativa L.)[J]. Molecular Biology Reports, 2013, 40(7): 4597-4603. doi:

    41. [41]

      JUNG C, MULLER A E.  Flowering time control and applications in plant breeding[J]. Trends in Plant Science, 2009, 14(10): 563-573. doi:

    42. [42]

      余苗, 王卉, 问鑫, 高凤仙.  牧草品质的主要评价指标及其影响因素[J]. 中国饲料, 2013, (13): 1-3, 7. doi:
      YU M, WANG H, WEN X, GAO F X.  The main evaluation indexes and influencing factors of forage quality[J]. China Feed, 2013, (13): 1-3, 7. doi:

    43. [43]

      MUSCO N, KOURA I B, TUDISCO R, AWADJIHE G, ADJOLOHOUN S, CUTRIGNELLI M I, MOLLICA M P, HOUINATO M, INFASCELLI F, CALABRO S.  Nutritional characteristics of forage grown in south of benin[J]. Asian-Australasian Journal of Animal Sciences, 2015, 29(1): 51-61. doi:

    44. [44]

      VAN SOEST P J.  Nutritional Ecology of the Ruminant[J]. Cornell University Press, 1994, 44(11): 2552-2561.

    45. [45]

      KHADILKAR A S, YADAV U P, SALAZAR C, SHULAEV V, PAEZ-VALENCIA J, PIZZO G A, GAXIOLA R A, AYRE B G.  Constitutive and companion cell-specific overexpression of AVP1, encoding a proton-pumping pyrophosphatase, enhances biomass accumulation, phloem loading, and long-distance transport[J]. Plant Physiology, 2015, 170(1): 401-414.

    46. [46]

      PIZZIO G A, PAEZ-VALENCIA J, KHADILKAR A S, REGMI K, PATRON-SOBERANO A, ZHANG S J, SANCHEZ-LARES J, FURSTENAU T, LI J S, SANCHEZ-GOMEZ C, VALENCIA-MAYORAL P, YADAV U P, AYRE B G, GAXIOLA R A.  Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning[J]. Plant Physiology, 2015, 167(4): 1541-1553. doi:

    47. [47]

      FERJANI A, SEGAMI S, HORIGUCHI G, MUTO Y, MAESHIMA M, TSUKAYA H.  Keep an eye on PPi: The vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis[J]. The Plant Cell, 2011, 23(8): 2895-2908. doi:

    48. [48]

      陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林.  氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J]. 中国农业科学, 2011, 44(17): 3529-3536. doi:
      CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L.  Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat[J]. Scientia Agricultura Sinica, 2011, 44(17): 3529-3536. doi:

    49. [49]

      倪军. 氮肥和密度对小麦茎秆抗倒伏性能及木质素积累的影响. 泰安: 山东农业大学硕士学位论文, 2018.
      NI J. Effects of nitrogen fertilizer and planting density on the lignin accumulation in the culm in relation to lodging resistance of wheat. Master Thesis. Taian: Shandong Agritcultural University, 2018.

    50. [50]

      PAEZ-VALENCIA J, SANCHEZ-LARES J, MARSH E, DORNELES L T, SANTOS M P, SANCHEZ D, WINTER A, MURPHY S, COX J, TRZASKA M, METLER J, KOZIC A, FACANHA A R, SCHACHTMAN D, SANCHEZ C A, GAXIOLA R A.  Enhanced proton translocating pyrophosphatase activity improves nitrogen use efficiency in romaine lettuce[J]. Plant Physiology, 2013, 161(3): 1557-1569. doi:

    51. [51]

      LI X J, GUO C J, GU J T, DUAN W W, ZHAO M, MA C Y, DU X M, LU W J, XIAO K.  Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought[J]. Journal of Experimental Botany, 2014, 65(2): 683-696. doi:

    52. [52]

      KUMAR T. 共表达霸王ZxNHX1ZxVP1-1基因紫花苜蓿对低氮和根瘤菌的生理及转录组响应. 兰州: 兰州大学博士学位论文, 2019.
      KUMAR T. Physiological and transcriptomic responses of transgenic alfalfa co-expressing ZxNHX1 and ZxVP1-1 genes from Zygophyllum xanthoxylum to low nitrogen with rhizobium. PhD Thesis. Lanzhou: Lanzhou University, 2019.

    53. [53]

      YEATS T H, ROSE, J K.  The formation and function of plant cuticles[J]. Plant physiology, 2013, 163(1): 5-20. doi:

    54. [54]

      BERNARD A, JOUBES J.  Arabidopsis cuticular waxes: Advances in synthesis, export and regulation[J]. Progress in Lipid Research, 2013, 52(1): 110-129. doi:

    55. [55]

      TAKEUCHI M, KEGASA T, WATANABE A, TAMURA M, TSUTSUMI Y.  Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation[J]. Journal of Plant Research, 2018, 131(2): 297-305. doi:

    56. [56]

      卢昆丽, 尹燕枰, 王振林, 李勇, 彭佃亮, 杨卫兵, 崔正勇, 杨东清, 江文文.  施氮期对小麦茎秆木质素合成的影响及其抗倒伏生理机制[J]. 作物学报, 2014, 40(9): 1686-1694. doi:
      LU K L, YIN Y P, WANG Z L, LI Y, PENG D L, YANG W B, CUI Z Y, YANG D Q, JIANG W W.  Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat[J]. Acta Agronomica Sinica, 2014, 40(9): 1686-1694. doi:

    57. [57]

      董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林.  不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响[J]. 中国农业科学, 2020, 53(21): 4399-4414. doi:
      DONG H H, LUO Y L, LI W Q, WANG Y Y, ZHANG Q X, CHEN J, JIN M, LI Y, WANG Z L.  Effects of different spring nitrogen topdressing modes on lodging resistance and lignin accumulation of winter wheat[J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414. doi:

    1. [1]

      屈皖华李志刚李 健 . 施用有机物料对沙化土壤碳氮含量、酶活性及紫花苜蓿生物量的影响. 欧宝体育, doi: 

    2. [2]

      林选栋武文莉林丽果周钰佩刘慧霞 . 不同盐胁迫水平下硅对高羊茅幼苗生物量、酶活性和渗透调节物质的影响. 欧宝体育, doi: 

    3. [3]

      吴冬强冯萌于成李天银吴德斌郭正刚 . 铁、锌配施对紫花苜蓿生物量和光合特征的影响. 欧宝体育, doi: 

    4. [4]

      张丽珍陈伟史静刘建荣王德宏陈本建 . 腐殖酸钠对紫花苜蓿生长及生物量的影响. 欧宝体育, doi: 

    5. [5]

      李源赵海明游永亮刘贵波翟兰菊武瑞鑫 . 海河低平原区施氮磷肥对高丹草生产性能及饲用品质的影响. 欧宝体育, doi: 

    6. [6]

      苏亚军焦婷吴建平李玉豆思远刘婷宫旭胤王建福雷赵民 . 种植密度和品种对青饲玉米生物量与营养品质的影响. 欧宝体育, doi: 

    7. [7]

      洪江涛吴建波王小丹 . 放牧和围封对藏北高寒草原紫花针茅群落生物量分配及碳、氮、磷储量的影响. 欧宝体育, doi: 

    8. [8]

      李源游永亮赵海明刘贵波武瑞鑫杨建忠 . 种植密度对高丹草农艺性状及饲用品质的影响. 欧宝体育, doi: 

    9. [9]

      陆文涛种培芳田艳丽贾向阳 . 模拟氮沉降及降水作用下红砂和珍珠猪毛菜幼苗生物量的分配模式. 欧宝体育, doi: 

    10. [10]

      王晔石雅琪刘呈刘雅然南张杰张秋芝潘金豹 . 水氮互作对青贮玉米产量和青贮品质的影响. 欧宝体育, doi: 

    11. [11]

      郭理想杨婕妤龙明秀马文雪岳佳铭刘洁臧琳呼天明何树斌 . AMF对不同水分条件下紫花苜蓿生态化学计量学特征的影响. 欧宝体育, doi: 

    12. [12]

      谢瑞娟张小晶刘金平游明鸿郭海燕 . 干旱和遮阴对荩草构件形态及生物量分配的影响. 欧宝体育, doi: 

    13. [13]

      杨东杨秀春金云翔徐斌 . 基于文献计量的草地生物量遥感监测研究进展. 欧宝体育, doi: 

    14. [14]

      朱铁霞高凯王琳高阳 . 断根时间和断根半径对菊芋根系生物量及其水平分布的影响. 欧宝体育, doi: 

    15. [15]

      田浩然杨傲刘航铄何刘贵杰赵航麻莹 . 盐碱胁迫对碱地肤的生物量及含氮化合物的影响. 欧宝体育, doi: 

    16. [16]

      潘冬荣闫浩文韩天虎孙斌姜佳昌柳小妮李霞王红霞 . 基于当量因子法的甘肃省草原生态系统服务价值评估. 欧宝体育, doi: 

    17. [17]

      苏淑兰肖建设裴青生李晓东苏文将 . 放牧对高寒草地植被生长的影响及其生物量预测模型构建. 欧宝体育, doi: 

    18. [18]

      文雅周培张忠雪段媛媛冯甘霖邓雨森郭正刚 . 施氮和灌溉互作对垂穗披碱草生物量及构成要素的影响. 欧宝体育, doi: 

    19. [19]

      杨小琴黄曦叶刘金平兰芳黄柳 . 土层厚度对千根草构件性状和生物量分配及拓展能力的影响. 欧宝体育, doi: 

    20. [20]

      翟星王继燕于冰苏勇杨莹辉 . 基于地上净初级生产力与地上生物量的若尔盖高原放牧强度遥感监测. 欧宝体育, doi: 

  • 欧宝体育

    图 1  田间条件下各株系的叶片形态和长势

    Figure 1.  Leaf morphology and growth performance of each plant under field conditions

    A: 各株系叶片形态;B-D: WT、NV和MA的田间长势。WT: 野生型;NV: 共表达ZxNHX1-VP1-1紫花苜蓿;MA: ZxABCG11转基因紫花苜蓿;下图和下表同。

    A: Leaf morphology of each plant; B–D: Growth performance of WT, NV, and MA under field conditions. WT: wild type; NV: co-expression ZxNHX1-VP1-1 transgenic alfalfa; MA: ZxABCG11 transgenic alfalfa; this is applicable to the following figures and tables as well.

    图 2  田间条件下各株系的叶面积、茎粗、分枝数和干草产量

    Figure 2.  Leaf area, stem thickness, number of branches, and hay yield of each plant under field conditions

    不同小写字母表示不同株系之间差异显著(P < 0.05);下同。

    Different lowercase letters indicate significant differences among different lines at the 0.05 level; this is applicable to the following figures as well.

    图 3  不同时期各株系的田间生长和开花情况

    Figure 3.  Growth and flowering performance of each plant at different dates under field conditions

    图 4  田间条件下各株系的净光合速率和水分利用率

    Figure 4.  Net photosynthesis rate and water use efficiency of each plant under field conditions

    图 5  田间条件下各株系的中性洗涤纤维、酸性洗涤纤维、酸性洗涤木质素含量和相对饲用价值

    Figure 5.  The neutral detergent fiber, acid detergent fiber, acid detergent lignin, and relative feed value of each plant under field conditions

    表 1  田间条件下各株系的开花日期

    Table 1.  Flowering period of each plant under field conditions

    株系 Plant strain初花期 Initial flowering stage盛花期 Full-blooming stage开花期/天数 Flowering period/days
    WT06−24—07−1207−13—08−0139
    NV06−24—07−1207−13—08−2058
    MA07−11—07−2507−26—09−2577
    下载: 导出CSV
    欧宝体育
  • <tfoot id='4mp2q'></tfoot>

          <legend id='4mp2q'><style id='4mp2q'><dir id='4mp2q'><q id='4mp2q'></q></dir></style></legend>
          <i id='4mp2q'><tr id='4mp2q'><dt id='4mp2q'><q id='4mp2q'><span id='4mp2q'><b id='4mp2q'><form id='4mp2q'><ins id='4mp2q'></ins><ul id='4mp2q'></ul><sub id='4mp2q'></sub></form><legend id='4mp2q'></legend><bdo id='4mp2q'><pre id='4mp2q'><center id='4mp2q'></center></pre></bdo></b><th id='4mp2q'></th></span></q></dt></tr></i><div id='4mp2q'><tfoot id='4mp2q'></tfoot><dl id='4mp2q'><fieldset id='4mp2q'></fieldset></dl></div>

              <bdo id='4mp2q'></bdo><ul id='4mp2q'></ul>

              1. 加载中
              2. 图(5)表(1)
                计量
                • PDF下载量:  55
                • 文章访问数:  174
                • HTML全文浏览量:  158
                文章相关
                • 通讯作者:  王锁民, smwang@webs-seo.com
                • 收稿日期:  2021-02-19
                • 接受日期:  2021-03-31
                • 网络出版日期:  2021-09-30
                通讯作者: 陈斌, bchen63@163.com
                • 1. 

                  沈(shen)阳化工大学材料科学与工程(cheng)学院 沈(shen)阳 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索

                /

                返回文章
                欧宝体育