欧宝体育

欢迎访问 欧宝体育,今天是

高寒草甸主(zhu)要组分种(zhong)开(kai)花物(wu)候(hou)对氮素(su)添(tian)加的响应

刘旭东 章志龙 杜国祯

引用本文: 刘旭东,章志龙,杜国祯. 高寒草甸主要组分种开花物候对氮素添加的响应. 欧宝体育, 2021, 38(7): 1240-1249 doi: shu
Citation:  LIU X D, ZHANG Z L, DU G Z. Response of dominant and common species flowering phenology to nitrogen addition in an alpine meadow. Pratacultural Science, 2021, 38(7): 1240-1249 doi: shu

高寒草甸主要组分种开花物候对氮素添加的响应

    作者简介: 刘旭东(1985-),男,甘肃会宁人,博士,研究方向为植物生态学、草地生态学和物候生态学。E-mail: liuxudongboy@163.com
    通讯作者: 杜国祯(1955-),男(藏族),甘肃卓尼人,教授,博士,研究方向为植物生态学和草地生态学。E-mail: guozdu@webs-seo.com
  • 基金项目: 甘肃省青年科技基金计划(18JR3RP248);甘肃省高等学校科研项目(2017A-141)

摘要: 合适的开花时间是植物最重要的生活史对策之一,而包括氮沉降在内的全球变化正在越来越深刻地影响着这一植物特征。通过不同浓度氮添加的原位试验本研究观测分析了高寒草甸植物群落花期物候对氮添加的响应,结果表明: 1)群落25个组分种花期物候表现为禾草类物种始花期在低氮(low nitrogen, LN)和高氮(high nitrogen, HN)处理下显著推迟(P < 0.01),花期持续时间在高氮处理下显著缩短(P < 0.05);而与此相反,杂草类物种始花期在高氮处理下显著提前(P < 0.05),花期持续时间显著延长(LN: P < 0.05;HN: P < 0.01)。2)始花期和花期持续时间呈显著负相关关系(P < 0.05)。3)在整个生长季内,花期物种丰富度变化呈连续交错趋势,与无氮对照(CK)相比,低氮和高氮处理下花期物种丰富度分别降低了29%和49%。研究表明,植物花期物候对氮添加的不同响应打破了植物在繁殖及竞争共存上原有的平衡,可能会改变群落组成、结构和功能。

English

    1. [1]

      LIETH H.  Phenology and seasonality modeling[J]. Ecological Studies, 1974, 120(6): 461-.

    2. [2]

      WALTHER G R, POST E, CONVEY P, MENZEL A, PARMESAN C, BEEBEE T J C, FROMENTIN J M, GULDBERG O H, BAIRLEIN F.  Ecological responses to recent climate change[J]. Nature, 2002, 416(): 389-395. doi:

    3. [3]

      SCHWARTZ M.  Onset of spring starting earlier across the northern hemisphere[J]. Global Change Biology, 2006, 12(2): 343-351. doi:

    4. [4]

      孟凡栋, 周阳, 崔树娟, 王奇, 斯确多吉, 汪诗平.  气候变化对高寒区域植物物候的影响[J]. 中国科学院大学学报, 2017, 34(4): 498-507. doi:
      MENG F D, ZHOU Y, CUI S J, WANG Q, TSECHOE D, WANG S P.  Effects of climate changes on plant phenology at high-latitude and alpine regions[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(4): 498-507. doi:

    5. [5]

      KATHUROJU N, WHITE M A, SYMANZIK J, SCHWARTZ M D, POWELL J A, NEMANI R R.  On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models[J]. Ecological Modelling, 2007, 201(2): 144-156. doi:

    6. [6]

      MURALI K S, SUKUMAR R.  Reproductive phenology of a tropical dry forest in Mudumalai, southern India[J]. Journal of Ecology, 1994, 82(4): 759-767. doi:

    7. [7]

      RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, RYU Y, SONNENTAG O, TOOMEY M.  Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169(3): 156-173.

    8. [8]

      HOLLAND E A, DENTENER F J, BRASWELL B H, SULZMAN J M.  Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry, 1999, 46(1): 7-43.

    9. [9]

      GALLOWAY J N, TOWNSEND A R, ERISMAN J W, BEKUNDA M, CAI Z.  Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(): 889-892. doi:

    10. [10]

      周小龙. 高寒草甸植物群落结构组建和生产力对施肥的响应机制. 兰州: 兰州大学博士学位论文, 2016.
      ZHOU X L. The effect of fertilization on community assembly and production in alpine meadow community. PhD Thesis. Lanzhou: Lanzhou University, 2016.

    11. [11]

      BOWMAN W D, GARTNER J R, HOLLAND K, WIEDERMANN M.  Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: Are we there yet?[J]. Ecological Applications, 2006, 16(3): 1183-1193. doi:

    12. [12]

      WOLKOVICH E M, COOK B I, ALLEN J M, CRIMMINS T M, TRAVERS S, PAU S, CLELAND E E.  Warming experiments under-predict plant phenological responses to climate change[J]. Nature, 2011, 485(): 494-497.

    13. [13]

      INOUYE D W, WIELGOLASKI F E. Phenology at High Altitudes. Berlin: Springer Netherlands, 2013.

    14. [14]

      SEASTEDT T R, BOWMAN W D, NELSON C T, MCKNIGHT D M, TOWNSEND A, WILLIAMS M W.  The landscape continuum: A model for high-elevation ecosystems[J]. Bioscience, 2014, 54(2): 111-121.

    15. [15]

      WU Q, REN H Y, WANG Z W, LI Z G, LIU Y H, WANG Z, LI Y H, ZHANG R Y, ZHAO M L, CHANG S X, HAN G D.  Additive negative effects of decadal warming and nitrogen addition on grassland community stability[J]. Journal of Ecology, 2020, 108(4): 1442-1452. doi:

    16. [16]

      符佩斌, 干友民, 张洪轩, 杨平贵, 郭丽娟, 曾华, 陈立坤, 张雪莲, 薛晶月, 刘焘.  施肥对高寒草甸产草量和品质的影响[J]. 欧宝体育, 2015, 32(7): 1137-1142. doi:
      FU P B, GAN Y M, ZHANG H X, YANG P G, GUO L J, ZENG H, CHEN L K, ZHANG X L, XUE J Y, LIU T.  Effects of fertilizing on the forage production and quality of alpine grassland[J]. Pratacultural Science, 2015, 32(7): 1137-1142. doi:

    17. [17]

      NIU K C, LUO Y J, CHOLER P, DU G Z.  The role of biomass allocation strategy in diversity loss due to fertilization[J]. Basic and Applied Ecology, 2008, 9(5): 485-493. doi:

    18. [18]

      SMITH J G, SCONIERS W, SPASOJEVIC M J, ASHTON I W, SUDING K N.  Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen[J]. Arctic Antarctic and Alpine Research, 2012, 44(1): 135-142. doi:

    19. [19]

      巴雅尔塔, 贾鹏, 杨晓, 杜国祯.  青藏高原高寒草甸组分种花期物候对施肥响应[J]. 草业学报, 2010, 19(3): 233-239. doi:
      BAYAERTA, JIA P, YANG X, DU G Z.  Response of dominating species flowering phenology to fertilization in Qinghai-Tibetan alpine meadow[J]. Acta Prataculturae Sinica, 2010, 19(3): 233-239. doi:

    20. [20]

      ZHANG Z L, NIU K C, LIU X D, JIA P, DU G Z.  Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow[J]. Journal of Plant Ecology, 2014, 7(3): 231-239. doi:

    21. [21]

      ROOT T L, PRICE J T, HALL K R, SCHNEIDER S H, ROSENZWEIG C, POUNDS J A.  Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(): 57-60. doi:

    22. [22]

      CLELAND E E, ALLEN J M, CRIMMINS T M, DUNNE J A, PAU S, TRAVERS S E, ZAVALETA E S, WOLKOVICH E M.  Phenological tracking enables positive species responses to climate change[J]. Ecology, 2012, 93(8): 1765-1771. doi:

    23. [23]

      SHERRY R A, ZHOU X H, GU S L, ARNONE J I, SCHIMEL D S, VERBURG P S, WALLACE L L, LUO Y Q.  Divergence of reproductive phenology under climate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 198-202. doi:

    24. [24]

      WANG C, TANG Y J.  Responses of plant phenology to nitrogen addition: A Meta-analysis[J]. Oikos, 2019, 128(9): 1243-1253. doi:

    25. [25]

      ALBERT L P, RESTREPO-COUPE N, SMITH M N, WU J, CHAVANA-BRYANT C, PROHASKA N, JAYLOR T C, MARTINS G A, CIAIS P, MAO J F, ALTAF ARAIN M, LI W, SHI X Y, RICCIUTO D M, HUXMAN T E, MCMAHON S M, SALESKA S R.  Cryptic phenology in plants: Case studies, implications, and recommendations[J]. Global Change Biology, 2019, 25(11): 3591-3608. doi:

    26. [26]

      LUO Y J, QIN G L, DU G Z.  Importance of assemblage level thinning: A field experiment in an alpine meadow on the Tibet plateau[J]. Journal of Vegetation Science, 2006, 17(4): 417-424.

    27. [27]

      PRICE M W, WASER N M.  Effects of experimental warming on plant reproductive phenology in a subalpine meadow[J]. Ecology, 1998, 79(4): 1261-1271. doi:

    28. [28]

      HOVENDEN M J, WILLS K E, VANDER SCHOOR J K, WILLIAMS A L, NEWTON P C D.  Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2[J]. New Phytologist, 2008, 178(4): 815-822. doi:

    29. [29]

      CLELAND E E, CHIARIELLO N R, LOARIE S R, MOONEY H A, FIELD C B.  Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37): 13740-13744. doi:

    30. [30]

      XIA J Y, WAN S Q.  Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe[J]. Annals of Botany, 2013, 111(6): 1207-1217. doi:

    31. [31]

      STEVENS C J, DISE N B, MOUNTFORD J O, GOWING D J.  Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004, 303(): 1876-1879. doi:

    32. [32]

      VERESOGLOU D S, FITTER A H.  Spatial and temporal patterns of growth and nutrient uptake of five co-existing grasses[J]. Journal of Ecology, 1984, 72(1): 259-272. doi:

    33. [33]

      ANDERSON J T, INOUYE D W, MCKINNEY A M, COLAUTTI R I, MITCHELL-OLDS T.  Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(): 3843-3852. doi:

    34. [34]

      ASHTON I W, MILLER A E, BOWMAN W D, SUDING K N.  Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms[J]. Ecology, 2010, 91(11): 3252-3260. doi:

    35. [35]

      LEVIN D A.  Flowering-time plasticity facilitates niche shifts in adjacent populations[J]. New Phytologist, 2009, 183(3): 661-666. doi:

    36. [36]

      FITTER A H, FITTER R S R.  Rapid changes in flowering time in British plants[J]. Science, 2002, 296(): 1689-1691. doi:

    37. [37]

      SCHWARTZ M D. Phenology: An Integrative Environmental Science. Dordrecht: Kluwer Academic Publishers, 2003.

    38. [38]

      TEPLITSKY C, MILLS J A, ALHO J S, YARRALL J W, MERILA J.  Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13492-13496. doi:

    39. [39]

      FORREST J, MILLER-RUSHING A J.  Toward a synthetic understanding of the role of phenology in ecology and evolution[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(): 3101-3112. doi:

    40. [40]

      ELZINGA J A, ATLAN A, BIERE A, GIGORD L, WEIS A E, BERNASCONI G.  Time after time: Flowering phenology and biotic interactions[J]. Trends in Ecology and Evolution, 2007, 22(8): 432-439. doi:

    41. [41]

      SMITH M M, KNAPP A K, COLLINS S L.  A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change[J]. Ecology, 2009, 90(12): 3279-3289. doi:

    42. [42]

      XIA J Y, NIU S L, WAN S Q.  Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology, 2009, 15(6): 1544-1556. doi:

    43. [43]

      OBESO J R.  Costs of reproduction in Ilex aquifolium: Effects at tree, branch and leaf levels[J]. Journal of Ecology, 1997, 85(2): 159-166. doi:

    44. [44]

      NIU K C, CHOLAR P, ZHAO B B, DU G Z.  The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands[J]. Functional Ecology, 2009, 23(2): 274-283. doi:

    45. [45]

      TILMAN D.  Secondary succession and the pattern of plant dominance along experimental nitrogen gradients[J]. Ecological Monographs, 1987, 57(): 189-214.

    46. [46]

      CLARK C M, TILMAN D.  Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(): 712-715. doi:

    47. [47]

      CLELAND E E, CHUINE I, MENZEL A, MOONEY H A.  Shifting plant phenology in response to global change[J]. Trends in Ecology and Evolution, 2007, 22(7): 357-365. doi:

    48. [48]

      SARGENT R D, ACKERLY D D.  Plant-pollinator interactions and the assembly of plant communities[J]. Trends in Ecology and Evolution, 2008, 23(3): 123-130. doi:

    49. [49]

      DUCHENNE F, THÉBAULT E, MICHEZ D, ELIAS M, DRAKE M, PERSSON M, ROUSSEAU-PIOT J S, POLLET M, VANORMELINGEN P, FONTAINE C.  Author correction: Phenological shifts alter the seasonal structure of pollinator assemblages in Europe[J]. Nature Ecology and Evolution, 2020, 4(1): 115-121. doi:

    50. [50]

      ZAVALETA E S, SHAW M R, CHIARIELLO N R, THOMAS B D, CLELAND E E, FIELD C B, MOONEY H A.  Grassland response to three years of elevated temperature, CO2, and precipitation and N depositio[J]. Ecological Monographs, 2003, 73(4): 585-604. doi:

    1. [1]

      张春花 . 放牧方式和施肥梯度对高寒草甸群落生产力和物种丰富度的影响. 欧宝体育, 2014, 8(12): 2293-2300. doi: 

    2. [2]

      张春花章志龙贾鹏 . 甘南高寒草甸群落花期物候研究. 欧宝体育, 2016, 10(2): 283-289. doi: 

    3. [3]

      罗久富周金星赵文霞董林水郑景明 . 围栏措施对青藏高原高寒草甸群落结构和稳定性的影响. 欧宝体育, 2017, 11(3): 565-574. doi: 

    4. [4]

      陈文年陈发军 . 青藏高原高山草甸群落生物量及多样性对氮素添加的响应. 欧宝体育, 2017, 11(5): 1082-1089. doi: 

    5. [5]

      黄文洁曾桐瑶黄晓东 . 青藏高原高寒草地植被物候时空变化特征. 欧宝体育, 2019, 36(4): 1032-1043. doi: 

    6. [6]

      张帆李元淳王新朱剑霄 . 青藏高原高寒草甸退化对草地群落生物量及其分配的影响. 欧宝体育, 2021, 38(8): 1451-1458. doi: 

    7. [7]

      冯斌杨晓霞董全民张春平刘文亭俞旸张小芳孙彩彩时光杨增增张艳芬 . 高寒草地主要物种对放牧方式的响应. 欧宝体育, 2021, 38(3): 531-543. doi: 

    8. [8]

      肖翔格日才旦侯扶江 . 青藏高原放牧和地形对高寒草甸群落α多样性和土壤物理性质的影响. 欧宝体育, 2019, 36(12): 3041-3051. doi: 

    9. [9]

      崔博亮安彦明张起鹏蒲萌陈克龙 . 坡度对亚高寒草甸狼毒群落植物多样性的影响. 欧宝体育, 2021, 38(5): 823-834. doi: 

    10. [10]

      苗福泓李世卿薛 冉王先之郭正刚沈禹颖 . 高寒草甸优势物种饲用品质对短期放牧的响应. 欧宝体育, 2014, 8(5): 915-921. doi: 

    11. [11]

      韩炳宏尚振艳袁晓波安卓文海燕李金博傅华牛得草 . 氮素添加对黄土高原典型草原长芒草光合特性的影响. 欧宝体育, 2016, 10(6): 1070-1076. doi: 

    12. [12]

      马建国侯扶江SamanBOWATTE . 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响. 欧宝体育, 2019, 36(12): 3033-3040. doi: 

    13. [13]

      陆均胡玉昆 . 甘肃马先蒿生物量分配及其寄主物候对覆雪的响应. 欧宝体育, 2016, 10(10): 1933-1941. doi: 

    14. [14]

      胡俊奇陈先江侯扶江 . 高寒草原群落特征对甘肃马鹿冬季放牧的响应. 欧宝体育, 2016, 10(6): 1028-1034. doi: 

    15. [15]

      何美悦王迎新彭泽晨常生华Saman Bowatte刘永杰侯扶江 . 祁连山草原地上生物量和物种丰富度的空间格局. 欧宝体育, 2020, 37(10): 2012-2021. doi: 

    16. [16]

      潘世成祁军张学炎陈蕾王静孟秀祥 . 兴隆山自然保护区华北珍珠梅物候期对水热条件的响应. 欧宝体育, 2016, 10(9): 1818-1824. doi: 

    17. [17]

      宋珊珊张建胜郑天立张帆朱剑霄 . 围栏封育对青海海北高寒草甸植被碳储量的影响. 欧宝体育, 2020, 37(12): 2414-2421. doi: 

    18. [18]

      李成阳赖炽敏彭飞薛娴尤全刚张文娟刘斐耀 . 青藏高原北麓河流域不同退化程度高寒草甸生产力和群落结构特征. 欧宝体育, 2019, 36(4): 1044-1052. doi: 

    19. [19]

      吴芸紫刘章勇蒋哲杨梅 . 稻-麦连作和稻-休耕农田植物物种多样性的比较. 欧宝体育, 2017, 11(5): 1090-1099. doi: 

    20. [20]

      程建伟郝百惠刘新民马文红李永宏 . 氮添加对内蒙古典型草原土壤动物的影响. 欧宝体育, 2018, 12(5): 1254-1265. doi: 

  • 欧宝体育

    图 1  2014年研究地日均气温与降水量变化

    Figure 1.  Mean daily temperature and daily precipitation of the study site in 2014

    图 2  低氮添加处理对高寒草甸25个常见物种始花期和花期持续时间的影响

    Figure 2.  Effect of low nitrogen addition treatment on the first flowering date and flowering duration of 25 common alpine species

    横坐标中“+”表示与无氮对照相比,始花期推迟或花期延长天数,“−”表示与无氮对照相比,始花期提前或花期缩短天数;*和**分别代表氮处理与无氮对照间差异显著(P < 0.05)和极显著(P < 0.01);下图同。

    “+”, for first flowering date delayed or flowering duration extended; “−”, for advanced or shortened; * and ** indicate significant difference between control (CK) and nitrogen treatment at 0.05 and 0.01 levels, respectively; this is applicable for the following figures as well.

    图 3  高氮添加处理对高寒草甸25个常见物种始花期和花期持续时间的影响

    Figure 3.  Effect of high nitrogen addition treatment on the first flowering date and flowering duration of 25 common alpine species

    图 4  不同氮添加处理下功能群始花期和花期持续时间的变化

    Figure 4.  Changes in the first flowering date and flowering duration of the different functional groups under the different nitrogen addition levels

    图 5  氮添加条件下物种始花期和花期持续时间的相关性

    Figure 5.  Relationship between the first flowering date and flowering duration of the different nitrogen addition levels

    图 6  生长季群落中花期物种丰富度对氮添加的响应

    Figure 6.  Species richness of flowering response to nitrogen addition during growth season

    欧宝体育

                      <dfn id='l631i'><optgroup id='l631i'></optgroup></dfn><tfoot id='l631i'><bdo id='l631i'><div id='l631i'></div><i id='l631i'><dt id='l631i'></dt></i></bdo></tfoot>

                      <ul id='l631i'></ul>

                      • 加载中
                      • WeChat 点(dian)击查看大图
                        图(6)
                        计量
                        • PDF下载量:  18
                        • 文章访问数:  862
                        • HTML全文浏览量:  389
                        文章相关
                        • 通讯作者:  杜国祯, guozdu@webs-seo.com
                        • 收稿日期:  2021-03-21
                        • 接受日期:  2021-04-07
                        • 网络出版日期:  2021-07-06
                        • 刊出日期:  2021-07-15
                        通讯作者: 陈斌, bchen63@163.com
                        • 1. 

                          沈阳(yang)化工大学材料科学与工程(cheng)学院(yuan) 沈阳(yang) 110142

                        1. 本站搜索
                        2. 百度学术搜索
                        3. 万方数据库搜索
                        4. CNKI搜索

                        /

                        返回文章
                        欧宝体育