欧宝体育

欢迎访问 欧宝体育,今天是

紫花苜蓿(xu)花朵中花色苷的提(ti)取及其微胶囊化

钟迪颖 武治兴 刘阳 杨晓月 张有林

引用本文: 钟迪颖,武治兴,刘阳,杨晓月,张有林. 紫花苜蓿花朵中花色苷的提取及其微胶囊化. 欧宝体育, 2021, 38(9): 1726-1736 doi: shu
Citation:  ZHONG D Y, WU Z X, LIU Y, YANG X Y, ZHANG Y L. Extraction and microencapsulation of anthocyanins from alfalfa flowers. Pratacultural Science, 2021, 38(9): 1726-1736 doi: shu

紫花苜蓿花朵中花色苷的提取及其微胶囊化

    作者简介: 钟迪颖(1996-),女,重庆沙坪坝人,在读硕士生,研究方向为农产品贮藏与加工。E-mail: 953809798@qq.com
    通讯作者: 张有林(1956-),男,甘肃庆阳人,教授,博导,博士,研究方向为食品贮藏与加工。E-mail: youlinzh@snnu.edu.cn
  • 基金项目: 榆林市科技计划项目(2019-6)

摘要: 紫花苜蓿(Medicago sativa)花朵中富含花色苷,可作为食品着色剂,本研究采用超声辅助法提取紫花苜蓿花色苷,通过响应面优化提取工艺以提高花色苷的提取率,对花色苷进行微胶囊化以提高花色苷的稳定性。结果表明,紫花苜蓿花色苷最佳提取工艺为61%的乙醇作提取剂、液料比 30 mL·g−1、提取温度65 ℃、提取时间25 min、超声功率250 W,花色苷含量为1.581 mg·g−1;以麦芽糊精、黄原胶和阿拉伯胶为壁材包埋花色苷,其最优比例的壁材为麦芽糊精 ꞉ 黄原胶 = 30 ꞉ 1 (w : w),包埋率高,微胶囊化花色苷稳定性好。

English

    1. [1]

      MILAD H, ALBERT I, JORDI P.  Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology[J]. Food Chemistry, 2020, (): 309-.

    2. [2]

      JAIME B, STEPHEN T, RICHARD A D.  Development and commercialization of reduced lignin alfalfa[J]. Current Opinion in Biotechnology, 2019, 56(): 48-54. doi:

    3. [3]

      罗雯, 王丹, 边佳辉, 孙占敏, 唐益雄, 吴燕民.  紫花苜蓿的皂苷研究[J]. 欧宝体育, 2019, 36(1): 261-271.
      LOU W, WANG D, BIAN J H, SUN Z M, TANG Y X, WU Y M.  Advances in the study of alfalfa saponins[J]. Pratacultural Science, 2019, 36(1): 261-271.

    4. [4]

      张春梅, 王成章, 胡喜峰, 刘圈炜, 何云.  紫花苜蓿的营养价值及应用研究进展[J]. 中国饲料, 2005, (1): 15-17. doi:
      ZHANG C M, WANG C Z, HU X F, LIU Q W, HE Y.  Research progress on nutritive value and application of alfalfa[J]. China Feed, 2005, (1): 15-17. doi:

    5. [5]

      孙娟娟, 阿拉木斯, 赵金梅, 薛艳林, 于林清, 玉柱, 张英俊.  6个紫花苜蓿品种氨基酸组成分析及营养价值评价[J]. 中国农业科学, 2019, 52(13): 2359-2367. doi:
      SUN J J, Alamusi, ZHAO J M, XUE Y L, YU L Q, YU Z, ZHANG Y J.  Analysis of amino acid composition and six native alfalfa cultivars[J]. Scientia Agricultura Sinica, 2019, 52(13): 2359-2367. doi:

    6. [6]

      ARACELI C O, MA D L P H, MA E P H, JOSÉ A R, CARLOS A G V.  Chemical studies of anthocyanin: A review[J]. Food Chemistry, 2008, 113(4): 859-871.

    7. [7]

      KHOO H E, AZLAN A, TANG S T, LIM S M.  Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food & Nutrition Research, 2017, 61(1): 1-21.

    8. [8]

      ADRIANA G T, CINTHIA B B C, MARIO R M J.  Anthocyanins: New techniques and challenges in microencapsulation[J]. Food Research International, 2020, 133(): 109092-. doi:

    9. [9]

      单建伟, 刘晓津, 索海翠, 安康, 罗焕明, 王丽, 李小波.  植物花色苷的研究进展[J]. 南方农业学报, 2019, 50(2): 278-285. doi:
      SHAN J W, LIU X J, SUO H C, AN K, LUO H M, WANG L, LI X B.  Plant anthocyanins: A review[J]. Journal of Southern Agriculture, 2019, 50(2): 278-285. doi:

    10. [10]

      ELISA P, FULVIO M, DAN J, CREINA S S.  The case for anthocyanin consumption to promote human health: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(5): 483-508.

    11. [11]

      HE K, LI X G, CHEN X, YE X L, HUANG J, JIN Y N, LI P P, DENG Y F, JIN Q, SHI Q, SHU H J.  Evaluation of antidiabetic potential of selected traditional Chinese medicines in STZ-induced diabetic mice[J]. Journal of Ethnopharmacology, 2011, 137(3): 1135-1142. doi:

    12. [12]

      许英一, 杨伟光.  紫花苜蓿花色苷提取工艺及其稳定性研究[J]. 食品工业, 2016, 37(12): 95-97.
      XU Y Y, YANG W G.  Study on the extraction technology and stability of anthocyanins from alfalfa[J]. The Food Industry, 2016, 37(12): 95-97.

    13. [13]

      HUANG Y, ZHOU W B.  Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion[J]. Food Chemistry, 2019, 278(): 357-363. doi:

    14. [14]

      LALEH G H, FRYDOONFAR H, HEIDARY R, JAMEEI R, ZARE S.  The Effect of light, temperature, ph and species on stability of anthocyanin pigments in four berberis species[J]. Pakistan Journal of Nutrition, 2006, 5(1): 90-.

    15. [15]

      BASHARAT Y, KHALID G, ABAS W A, PREETI S.  Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(13): 2223-2230. doi:

    16. [16]

      SONJA B, MANUELA B, EVA M H, KARIN S.  Influence of different pectins on powder characteristics of microencapsulated anthocyanins and their impact on drug retention of shellac coated granulate[J]. Journal of Food Engineering, 2012, 108(1): 158-165. doi:

    17. [17]

      MAHDAVI S A, JAFARI S M, GHORBANI M, ASSADPOOR E.  Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review[J]. Drying Technology, 2014, (32): 509-518.

    18. [18]

      黄雨洋, 齐宝坤, 赵城彬, 王婵, 李杨, 张爽.  微胶囊化核桃粉末油脂制备工艺及其氧化稳定性研究[J]. 中国食品学报, 2019, 19(2): 132-138.
      HUANG Y Y, QI B K, ZHAO C B, WANG C, LI Y, ZHANG S.  Research on preparation technology of microencapsulated walnut powder oils and oxidative stability[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(2): 132-138.

    19. [19]

      URSZULA S, URSZULA Z, MONIKA K, BARBARA B.  Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors[J]. Food Chemistry, 2015, 172(): 71-77. doi:

    20. [20]

      宋德群, 孟宪军, 王晨阳, 王冠群, 吕春茂.  蓝莓花色苷的pH示差法测定[J]. 沈阳农业大学学报, 2013, 44(2): 231-233. doi:
      SONG D Q, MENG X J, WANG C Y, WANG G Q, LYU C M.  Determination of blueberry anthocyanins through pH differential method[J]. Journal of Shenyang Agricultural University, 2013, 44(2): 231-233. doi:

    21. [21]

      CAI X R, DU X F, CUI D M, WANG X N, YANG Z K, ZHU G L.  Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation[J]. Food Hydrocolloids, 2019, 91(): 238-245. doi:

    22. [22]

      SAHAR A M, SEID M J, ELHAM A, DANIAL D.  Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin[J]. International Journal of Biological Macromolecules, 2016, 85(): 379-385. doi:

    23. [23]

      AMR E.  E, DANUTA K, JANUSZ A, MARCIN P[J]. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications. Food Chemistry, 2016, 204(): 326-333.

    24. [24]

      ZHOU D, PAN Y, YE J, JIA J F, MA J F, GE F H.  Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil[J]. LWT-Food Science and Technology, 2017, 83(): 292-297. doi:

    25. [25]

      毕凯媛, 崔珊珊, 高阳, 孙晓宇, 成天乐, 尚宏丽.  超声辅助果胶酶法提取红树莓花色苷及其成分测定[J]. 食品工业科技, 2018, 39(13): 198-205.
      BI K Y, CUI S S, GAO Y, SUN X Y, CHENG T L, SHANG H L.  Ultrasonic-assisted pectinase extraction and identification of anthocyanins from Rubus idaeus[J]. Science and Technology of Food Industry, 2018, 39(13): 198-205.

    26. [26]

      位路路, 林杨, 王月华, 孟宪军.  黑果腺肋花楸花色苷提取工艺优化及其抗氧化活性和组成鉴定[J]. 食品科学, 2018, 39(12): 239-246. doi:
      WEI L L, LIN Y, WANG Y H, MENG X J.  Optimization of extraction of anthocyanins from berries of aronia melanocarpa and their antioxidant activity and composition[J]. Food Science, 2018, 39(12): 239-246. doi:

    27. [27]

      陈钢, 黄立山, 徐静, 简素平, 汪海利.  黑莓花色苷的超声波提取与抗氧化性活性研究[J]. 食品科学, 2012, 33(24): 117-121. doi:
      CHEN G, HUANG L S, XU J, JIAN S P, WANG H L.  Ultrasonic-assisted extraction and antioxidant activity of antho cyanins from blackberry fruits[J]. Food Science, 2012, 33(24): 117-121. doi:

    28. [28]

      杨聪颖, 骆亚丽, 郭时印, 肖航, 饶力群, 唐忠海.  响应面优化金柑多酚的提取工艺[J]. 现代食品科技, 2018, 34(5): 174-181.
      YANG C Y, LUO Y L, GUO S Y, XIAO H, RAO L Q, TANG Z H.  Optimization of extraction process of polyphenols from kumquat by response surface methodology[J]. Modern Food Science and Technology, 2018, 34(5): 174-181.

    29. [29]

      PEREZ H M, VASANTHAN T.  Rheological characterization of gum and starch nanoparticle blends[J]. Food Chemistry, 2018, 243(): 43-49. doi:

    30. [30]

      LUCIANA P, TAIANE C M, VÂNIA Z P, JESSICA F H, NATHAN L V, LOONG T L, ALVARO R G D, ELESSANDRA R Z.  PH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage[J]. LWT-Food Science and Technology, 2017, 80(): 492-500. doi:

    31. [31]

      ZHANG B, SUN B H, LI X X, YU Y, TIAN Y Q, XU X M, JIN Z Y.  Synthesis of pH and ionic strength-responsive microgels and their interactions with lysozyme[J]. International Journal of Biological Macromolecules, 2015, 79(): 392-7. doi:

    32. [32]

      BAN Z J, ZHANG J L, LI L, LUO Z S, WANG Y J, YUAN Q P, ZHOU B, LIU H D.  Ginger essential oil-based microencapsulation as an efficient delivery system for the improvement of Jujube (Ziziphus jujuba Mill[J]. ) fruit quality. Food Chemistry, 2020, 306(): 125628-.

    33. [33]

      DIEGO A B, ISTEFANE C B R, HUGO J B D S, REGIANE V B F.  Application of inulin in thin-layer drying process of araticum (Annona crassiflora) pulp[J]. LWT-Food Science and Technology, 2016, 69(): 32-39. doi:

    34. [34]

      袁惠君, 李欣, 贾鸿震, 袁毅君.  响应面法优化黄芪总黄酮提取工艺及初步纯化[J]. 欧宝体育, 2019, 36(6): 1683-1691.
      YUAN H J, LI X, JIA H Z, YUAN Y J.  Optimization of extraction technology for total flavonoids from astragali radix by response surface methodology and their preliminary enrichment[J]. Pratacultural Science, 2019, 36(6): 1683-1691.

    35. [35]

      GÜLAY Ö, SEDA E B.  Microencapsulation of natural food colourants[J]. International Journal of Nutrition and Food Sciences, 2014, 3(3): 145-156. doi:

    36. [36]

      JULIANA D C G R, FREDERICO A R D B, ÍTALO T P, KÉLLEN W C V, GUILHERME M T, RODRIGO S, PAULO C S.  Microencapsulation by atomization of the mixture of phenolic extracts[J]. Powder Technology, 2018, 343(): 317-325.

    37. [37]

      陈程莉, 李丰泉, 刁倩, 常馨月, 龚娣, 董全.  不同壁材对黑枸杞花青素微胶囊稳定性和缓释特性的影响[J]. 食品与发酵工业, 2020, 46(16): 78-85.
      CHEN C L, LI F Q, DIAO Q, CHANG X Y, GONG D, DONG Q.  Effects of different wall materials on the stability and sustained-release characteristics of Lycium ruthenicum Murr[J]. Food and Fermentation Industries, 2020, 46(16): 78-85.

    38. [38]

      IDHAM Z, MUHAMAD I I, SARMIDI M R.  Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L[J]. Journal of Food Process Engineering, 2012, 35(): 522-542. doi:

    39. [39]

      VÍVIAN M B, PRISCILLA N R, NAYLA E F L, MARIA C R H, MARILDE T B L.  Anthocyanins: Optimisation of extractionfrom Cabernet Sauvignon grapes, microcapsulation and stability in soft drink[J]. International Journal of Food Science & Technology, 2011, 46(1): 186-193.

    40. [40]

      EWELINA P, MARCIN A K.  Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry[J]. International Journal of Biological Macromolecules, 2019, 129(): 665-671. doi:

    41. [41]

      KANHA N, REGENSTEIN J M, SURAWANG S, PITCHAKARN P, LAOKULDILOK T.  Properties and kinetics of the in vitro release of anthocyanin-rich microcapsules produced through spray and freeze-drying complex coacervated double emulsions[J]. Food Chemistry, 2021, 340(): 127950-.

    42. [42]

      ZHANG R, ZHOU L, LI J, OLIVEIRA H, YANG N, JIN W P, ZHU Z Z, LI S Y, HE J R.  Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility[J]. LWT-Food Science and Technology, 2020, (): 123-.

    1. [1]

      罗雯王丹边佳辉孙占敏唐益雄吴燕民 . 紫花苜蓿的皂苷研究. 欧宝体育, 2019, 36(1): 261-272. doi: 

    2. [2]

      刘家杏田静许留兴唐国建王晓亚张建国 . 不同处理对叶菜贮藏过程中亚硝酸盐含量的影响. 欧宝体育, 2018, 12(5): 1287-1292. doi: 

    3. [3]

      陈晶晶王英哲金艳郭强徐博 . 不同紫花苜蓿杂交组合对冻害胁迫的生理响应. 欧宝体育, 2018, 12(5): 1138-1144. doi: 

    4. [4]

      施伟梅吴龙火杨翔杨莎 . 超声协同酶法提取紫花苜蓿多酚及其抗氧化性质. 欧宝体育, 2016, 10(3): 519-526. doi: 

    5. [5]

      俞梦妮包婉君谌馥佳隆小华刘 玲刘兆普 . 菊芋叶蛋白提取工艺研究及氨基酸分析 . 欧宝体育, 2015, 9(1): 125-131. doi: 

    6. [6]

      齐晓闵学阳张正社孙启忠刘文献 . 紫花苜蓿响应低温胁迫转录因子的鉴定及表达分析. 欧宝体育, 2017, 11(9): 1824-1829. doi: 

    7. [7]

      张亚玲张攀尹航王洋孙杰吴清莹付佳琦崔国文 . 紫花苜蓿9个盐响应相关基因表达模式. 欧宝体育, 2018, 12(5): 1057-1066. doi: 

    8. [8]

      宋曦王金成井明博刘光琇陈拓吴胜伟周天林 . 紫花苜蓿对陇东黄土高原油污土壤场地生态修复的综合响应. 欧宝体育, 2019, 36(7): 1754-1764. doi: 

    9. [9]

      赵一航孟令东张晓萌王丽娜刘皓玥毕琳琳刘宏亮殷秀杰 . 4个紫花苜蓿品种对低温胁迫的生理响应及抗寒性评价. 欧宝体育, 2021, 38(4): 683-692. doi: 

    10. [10]

      蔡雪梅罗珠珠李玲玲牛伊宁蔡立群谢军红张耀全马欣潘占东 . 黄土高原旱作农田土壤水分对苜蓿种植年限和后茬春小麦的响应. 欧宝体育, 2020, 37(9): 1833-1844. doi: 

    11. [11]

      高润柳茜闫亚飞李峰陶雅孙启忠张仲鹃 . 河套灌区23个紫花苜蓿品种适应性. 欧宝体育, 2017, 11(6): 1286-1298. doi: 

    12. [12]

      陈菲穆麟文昭竹张志飞魏仲珊 . 洞庭湖区不同品种紫花苜蓿的混播效应. 欧宝体育, 2018, 12(7): 1734-1742. doi: 

    13. [13]

      张志飞斯达孙系巍穆麟赵红凯李志才魏仲珊 . 洞庭湖区5个紫花苜蓿品种高温期刈割后的表现. 欧宝体育, 2017, 11(7): 1469-1474. doi: 

    14. [14]

      张世超王英哲金艳陈晶晶王莹徐博 . 紫花苜蓿细胞质雄性不育恢复基因的初步定位. 欧宝体育, 2018, 12(5): 1067-1071. doi: 

    15. [15]

      薛春胜刘瑞生徐建峰张金林 . 不同添加剂对陇东紫花苜蓿青贮品质的影响. 欧宝体育, 2018, 12(2): 456-462. doi: 

    16. [16]

      王洋崔国文尹航杨柳张亚玲闫得朋巩林 . 施肥对紫花苜蓿生产性能及营养品质的影响. 欧宝体育, 2019, 36(3): 793-803. doi: 

    17. [17]

      宋述锐于华黄椰张卫红 . 不同钾肥对渍水胁迫下紫花苜蓿叶绿素荧光特性的影响. 欧宝体育, 2021, 38(4): 693-702. doi: 

    18. [18]

      李凤杰于晨马力周鹏安渊 . 施肥对冬闲稻田紫花苜蓿生长及苜蓿绿肥对轮作水稻产量的影响. 欧宝体育, 2021, 38(10): 1-11. doi: 

    19. [19]

      郭湘郭一帆黄思怡蒲棋杨康彭燕 . 干旱和盐胁迫对14个紫花苜蓿品种种子萌发特性的影响. 欧宝体育, 2019, 36(9): 2292-2303. doi: 

    20. [20]

      马超然何树斌白雪纯王涛张君红冯魁亮夏宇康 . 套种紫花苜蓿对玉米根际土壤碳、氮、磷及真菌群落的影响. 欧宝体育, 2020, 37(1): 20-29. doi: 

  • 欧宝体育

    图 1  不同液料比、乙醇浓度、提取温度、提取时间对紫花苜蓿花粉末花色苷提取效果的影响

    Figure 1.  Effects of different liquid-to-material ratios, concentration of ethanol, and extraction temperature and time on extracting anthocyanins from alfalfa flower powder

    不同小写字母表示不同提取处理之间差异显著(P < 0.05)。

    Different lowercase letters indicate significant differences between different extraction condition at the 0.05 level.

    图 2  各因素交互作用的响应面分析图

    Figure 2.  Response surface evaluations of the interactions among these factors

    图 3  紫花苜蓿花色苷不同壁材微胶囊微观形态

    Figure 3.  Morphology of various alfalfa anthocyanin microcapsules produced using different wall materials

    M-ANS为以麦芽(ya)糊(hu)精为壁材包埋(mai)的(de)紫花苜(mu)(mu)蓿(xu)花色苷微胶(jiao)(jiao)囊(nang),M/H(30/1)-ANS和(he)M/A(30/1)-ANS分(fen)别(bie)为以麦芽(ya)糊(hu)精和(he)黄(huang)原胶(jiao)(jiao)(w : w = 30 : 1)和(he)以麦芽(ya)糊(hu)精和(he)阿拉伯胶(jiao)(jiao)(w : w = 30 : 1)为壁材包埋(mai)的(de)紫花苜(mu)(mu)蓿(xu)花色苷微胶(jiao)(jiao)囊(nang)。下同。

    M-ANS represents alfalfa anthocyanin microcapsules embedded with maltodextrin as the wall material; M/H(30/1)-ANS and M/A(30/1)-ANS respectively represents the alfalfa anthocyanin microcapsules embedded with maltodextrin and xanthan gum (w : w = 30 : 1) and with maltodextrin and gum arabic (w : w = 30 : 1) as the wall material; this is applicable for the following tables and figures.

    图 4  不同壁材微胶囊热重变化及X-射线衍射图

    Figure 4.  Thermogravimetry and X-ray diffraction of microcapsules produced using different wall materials

    图 5  紫花苜蓿花色苷不同壁材微胶囊的贮藏特性

    Figure 5.  Storage characteristics of Medicago sativa anthocyanin microcapsules produced using different wall materials

    不同小写字母表示不同贮存时间各处理之间差异显著(P < 0.05)。M1-M7参见表4,M8为未微胶囊化的紫花苜蓿花色苷。

    Different lowercase letters indicate significant differences among different treatments at the 0.05 level.M1-M7 refor to Table 4, M8 was non-microencapsulated alfalfa anthocyanins.

    表 1  响应面优化试验设计因素与水平表

    Table 1.  Response surface optimization design factors and levels

    试验水平
    Test level
    试验因素 Experimental factor
    A/(mL·g−1)B/%C/℃D/min
    −1 25 55 60 20
    0 30 60 65 25
    1 35 65 70 30
     A表示液料比;B表示乙醇浓度;C表示提取温度;D表示提取时间;−1、0、1分别表示3组试验水平;表2同。
     A represents the liquid to material ratio; B represents the ethanol concentration; C represents the extraction temperature; D represents the extraction time; −1, 0, and 1, represent each of the three test levels, respectively; this is applicable for the following Table 2 as well.
    下载: 导出CSV

    表 2  BBD响应面优化试验设计与结果

    Table 2.  BBD response surface optimization design parameters and results

    试验组别
    Test group
    因素 Factor花色苷含量
    Anthocyanin content/
    (mg·g−1)
    ABCD
    1 0 −1 0 1 1.497
    2 0 1 −1 0 1.449
    3 0 −1 0 −1 1.459
    4 1 0 −1 0 1.506
    5 −1 −1 0 0 1.497
    6 0 0 0 0 1.586
    7 0 0 0 0 1.584
    8 0 0 −1 −1 1.511
    9 −1 −1 0 0 1.454
    10 0 1 0 −1 1.515
    11 0 0 0 0 1.582
    12 1 1 0 0 1.532
    13 0 1 1 0 1.459
    14 0 1 0 1 1.479
    15 −1 1 0 0 1.453
    16 0 0 1 −1 1.510
    17 1 0 0 −1 1.557
    18 0 −1 −1 0 1.445
    19 0 0 1 1 1.536
    20 1 0 1 0 1.503
    21 −1 0 1 0 1.498
    22 0 0 0 0 1.572
    23 0 −1 1 0 1.441
    24 −1 0 0 1 1.557
    25 −1 0 −1 0 1.489
    26 0 0 0 0 1.585
    27 0 0 −1 1 1.491
    28 1 0 0 1 1.538
    29 −1 0 0 −1 1.523
     试验号1~29分别表示一定水平的液料比、乙醇浓度、提取温度、提取时间的试验组别。
     Test numbers 1~29 indicate a certain level of liquid to material ratio, ethanol concentration, extraction temperature and extraction time, respectively.
    下载: 导出CSV

    表 3  紫花苜蓿花粉末中花色提取量方差分析

    Table 3.  Analysis of the extraction values for anthocyanins from alfalfa petal powder

    方差来源
    Source of variance
    平方和
    Sum of squares
    自由度
    Degree of freedom
    均方
    Mean square
    FP显著性
    Significance
    模型 Model 0.058 14 4.18 × 10−3 101.70 < 0.000 1 **
    A 4.44 × 10−4 1 4.44 × 10−4 10.81 0.005 4 **
    B 7.36 × 10−4 1 7.36 × 10−4 17.93 0.000 8 **
    C 2.61 × 10−4 1 2.61 × 10−4 6.36 0.024 *
    D 4.41 × 10−5 1 4.41 × 10−5 1.07 0.32
    AB 3.72 × 10−3 1 3.72 × 10−3 90.59 < 0.000 1 **
    AC 3.60 × 10−5 1 3.60 × 10−5 0.88 0.37
    AD 7.02 × 10−4 1 7.02 × 10−4 17.10 0.0010 **
    BC 4.90 × 10−5 1 4.90 × 10−5 1.19 0.29
    BD 1.37 × 10−3 1 1.37 × 10−3 33.33 < 0.0001 **
    CD 5.29 × 10−4 1 5.29 × 10−4 12.88 0.003 0 **
    A2 3.53 × 10−3 1 3.53 × 10−3 85.85 < 0.0001 **
    B2 0.038 1 0.038 928.81 < 0.0001 **
    C2 0.021 1 0.021 512.03 < 0.0001 **
    D2 1.47 × 10−3 1 1.47 × 10−3 35.85 < 0.0001 **
    残差 Residual 5.75 × 10−4 14 4.11 × 10−5
    失拟项 Lack of fit 4.46 × 10−4 10 4.46 × 10−5 1.39 0.40
    净误差 Pure error 1.29 × 10−4 4 3.22 × 10−5
    总和 Cor total 0.059 28
     方差来源中A代表液料比,B代表乙醇浓度,C代表提取温度,D代表提取时间,AB、AC、AD、BC、BD、CD分别代表其对应因素之间的交互作用,A2、B2、C2、D2分别代表其对应因素组内的交互作用;*、**分别表示方差来源之间差异显著(P < 0.05)和极显著(P < 0.001)。
     In the source of variance, A represents the liquid to material ratio; B represents the ethanol concentration; C represents the extraction temperature; D represents the extraction time; AB, AC, AD, BC, BD, and CD represent the interaction between their corresponding factors; and A2, B2, C2, D2, represent the interactions within the corresponding factor groups. Different lowercase letters within the same time period after sowing indicate significant differences between the different treatment conditions at the 0.05 level; *, ** indicate significant differences among different sources of variance at 0.05 and 0.01 levels respectively.
    下载: 导出CSV

    表 4  不同壁材的花色苷微胶囊包埋率及色差分析

    Table 4.  Analysis of encapsulation efficiency and color differences in anthocyanin microcapsules produced using different wall materials

    编号
    Code
    样品
    Sample
    包埋率
    Encapsulation efficiency/%
    La*b*c
    M1M-ANS79.57 ± 0.31f42.41 ± 0.07e13.3 ± 0.14d5.39 ± 0.05b2.32 ± 0.01b1.16b
    M2M/H(10/1)-ANS98.26 ± 0.17a52.25 ± 0.22bc18.54 ± 0.26b5.50 ± 0.06b2.35 ± 0.01b1.17b
    M3M/H(20/1)-ANS96.75 ± 0.09c50.57 ± 0.35d18.54 ± 0.28b4.62 ± 0.11d2.14 ± 0.03d1.13d
    M4M/H(30/1)-ANS98.37 ± 0.22a50.45 ± 0.32d19.43 ± 0.42a5.59 ± 0.15b2.36 ± 0.03b1.17b
    M5M/A(10/1)-ANS95.77 ± 0.10e52.82 ± 0.40b17.7 ± 0.21c6.68 ± 0.09a2.58 ± 0.02a1.20a
    M6M/A(20/1)-ANS96.13 ± 0.07d53.62 ± 0.32a18.31 ± 0.36b3.49 ± 0.09e1.87 ± 0.02e1.08e
    M7M/A(30/1)-ANS97.79 ± 0.12b51.98 ± 0.26c18.38 ± 0.26b5.01 ± 0.15c2.24 ± 0.03c1.15c
     M/H(10/1)-ANS为以麦芽糊精和黄原胶(w : w = 10 : 1)为壁材包埋的紫花苜蓿花色苷微胶囊,M/H(20/1)-ANS为以麦芽糊精和黄原胶(w : w = 20 : 1)为壁材包埋的紫花苜蓿花色苷微胶囊,M/A(10/1)-ANS为以麦芽糊精和阿拉伯胶(w : w = 10 : 1)为壁材包埋的紫花苜蓿花色苷微胶囊,M/A(20/1)-ANS为以麦芽糊精和阿拉伯胶(w : w = 20 : 1)为壁材包埋的紫花苜蓿花色苷微胶囊;a*代表了样品的红绿程度,其值为正时样品为红色,为负时样品为绿色;b*代表了样品的黄蓝程度,其值为正时样品为黄色,为负时样品为蓝色;L代表样品的亮度;c代表色度;h°代表色相角; 不同小写字母表示不同壁材之间差异显著(P < 0.05);下同。
     M/H(10/1)-ANS represents the alfalfa anthocyanin microcapsules embedded with maltodextrin and xanthan gum (w : w = 10 : 1) as the wall material; M/H(20/1)-ANS represents the alfalfa anthocyanin microcapsules embedded with maltodextrin and xanthan gum (w : w = 20 : 1) as the wall materia; M/A(10/1)-ANS represents the alfalfa anthocyanin microcapsules embedded with maltodextrin and gum arabic (w : w = 10 : 1) as the wall material; M/A(20/1)-ANS represents the alfalfa anthocyanins microcapsules embedded with maltodextrin and gum arabic (w : w = 20 : 1) as the wall material; a* represents the reddish-green value in each sample: positive is red and negative is green. b* represents the degree of yellow and blue in each sample: positive is yellow and negative is blue. L represents the luminance of each sample; c represents the chromaticity of each sample; h° represents the phase angle for each sample; different lowercase letters indicate significant differences between different wall materials at the 0.05 level; this is applicable for the following tables and figures.
    下载: 导出CSV
    欧宝体育

                      <dfn id='7jf72'><optgroup id='7jf72'></optgroup></dfn><tfoot id='7jf72'><bdo id='7jf72'><div id='7jf72'></div><i id='7jf72'><dt id='7jf72'></dt></i></bdo></tfoot>

                      <ul id='7jf72'></ul>

                      • 加载中
                      • 图(5)表(4)
                        计量
                        • PDF下载量:  2
                        • 文章访问数:  412
                        • HTML全文浏览量:  213
                        文章相关
                        • 通讯作者:  张有林, youlinzh@snnu.edu.cn
                        • 收稿日期:  2021-04-14
                        • 网络出版日期:  2021-07-23
                        • 刊出日期:  2021-09-15
                        通讯作者(zhe): 陈斌, bchen63@163.com
                        • 1. 

                          沈阳化工(gong)大(da)学材料科学与(yu)工(gong)程(cheng)学院 沈阳 110142

                        1. 本站搜索
                        2. 百度学术搜索
                        3. 万方数据库搜索
                        4. CNKI搜索

                        /

                        返回文章
                        欧宝体育