欧宝体育

欢迎访问 欧宝体育,今天是

胺鲜(xian)酯对铬胁迫下白三叶种子萌发(fa)特性(xing)的影响(xiang)

王铎 田雨龙 张鸿建 张庆庆 陈柯如 李州

引用本文: 王铎,田雨龙,张鸿建,张庆庆,陈柯如,李州. 胺鲜酯对铬胁迫下白三叶种子萌发特性的影响. 欧宝体育, 2021, 38(10): 1-12 doi: shu
Citation:  WANG D, TIAN Y L, ZHANG H J, ZHANG Q Q, CHEN K R, LI Z. Effects of diethyl aminoethyl hexanoate on seed germination characteristics of white clover under chromium stress. Pratacultural Science, 2021, 38(10): 1-12 doi: shu

胺鲜酯对铬胁迫下白三叶种子萌发特性的影响

    作者简介: 王铎(1999-),男,山西阳泉人,本科,研究方向为植物逆境生理。E-mail: hehe990513@163.com
    通讯作者: 李州(1986-),男,云南西畴人,副教授,博士,研究方向为植物逆境生理。E-mail: lizhou1986814@163.com
  • 基金项目: 国家级大学生创新创业训练计划(202010626029)

摘要: 本研究以‘海发’白三叶(Trifolium repens ‘Haifa’)为供试材料,研究胺鲜酯(diethyl aminoethyl hexanoate, DA-6)浸种预处理对铬(chromium, Cr6+)胁迫下白三叶种子萌发耐性的影响。研究表明,5 mmol·L−1的Cr6+溶液显著抑制白三叶种子萌发(P < 0.05)。40~60 mmol·L−1的DA-6可显著提高白三叶在铬胁迫下萌发指标(P < 0.05),且在60 mmol·L−1浓度下效果最佳。Cr6+胁迫下,DA-6浸种使种子萌发过程中游离脯氨酸和可溶性糖含量分别提高1.6和3.8倍,细胞渗透势显著降低(P < 0.05),同时显著提高Cr6+胁迫下抗氧化酶活性和抗坏血酸-谷胱甘肽循环代谢(P < 0.05),从而有效降低Cr6+胁迫导致的氧化伤害,提高细胞膜稳定性。上述结果表明,DA-6浸种显著提高白三叶种子在Cr6+胁迫下的萌发率及萌发期耐铬性,这与提高渗透调节能力及增强抗氧化防御系统密切相关。

English

    1. [1]

      吴永洁, 王元素, 李莉.  国内白三叶研究进展[J]. 种子, 2015, 34(7): 46-51.
      WU Y J, WANG Y S, LI L.  Research advancement on Trifolium repens in China[J]. Seed, 2015, 34(7): 46-51.

    2. [2]

      闫桂芹.  提高白三叶草坪观赏性技术措施[J]. 现代园艺, 2015, (7): 50-52. doi:
      YAN G Q.  Technical measures for improving the ornamental value of white clover[J]. Modern Horticulture, 2015, (7): 50-52. doi:

    3. [3]

      符京燕, 梁林林, 周敏, 李州.  伽马氨基丁酸浸种对铝胁迫下白三叶种子萌发及耐铝性的影响[J]. 草地学报, 2020, 28(5): 1275-1284.
      FU J Y, LIANG L L, ZHOU M, LI Z.  Effects of seeds soaking with γ-aminobutyric acid on germination and aluminium tolerance of white clover[J]. Acta Agrestia Sinica, 2020, 28(5): 1275-1284.

    4. [4]

      CARLOS C, JESUS C, SILVIA D, FELIX G, HERMINIA L T, JUAN C T, RAFAEL M.  Interactions of chromium with microorganisms and plants[J]. FEMS Microbiology Reviews, 2001, 25(3): 335-347. doi:

    5. [5]

      IYAKA Y A.  Chromium in soils: A review of its distribution and impacts[J]. Continental Journal of Environmental Science, 2009, (3): 13-18.

    6. [6]

      王秀丽, 刘安军, 李琨, 高伟佳, 刘景彬.  胶原蛋白多肽-铬(Ⅲ)螯合物的降血糖机理探讨[J]. 食品研究与开发, 2006, 27(5): 125-126. doi:
      WANG X L, LIU A K, LI K, GAO W J, LIU J B.  Study on the hypoglycemic effects of collagen peptide-chromium (Ⅲ) complex[J]. Food Research and Development, 2006, 27(5): 125-126. doi:

    7. [7]

      HEWITT E J.  Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and marrowstem kale grown in sand culture[J]. Journal of Experimental Botany, 1953, 4(1): 59-64. doi:

    8. [8]

      姚学良, 廖远安.  成都市金牛区土壤重金属污染状况: 浅谈土壤生态环境治理的紧迫性问题[J]. 四川地质学报, 2002, 22(3): 158-160. doi:
      YAO X L, LIAO Y A.  On heavy metal pollution in soil in the Jinniu Dsitrict, Chengdu City: An urgent problem of ecologic environment control of soil[J]. Acta Geologica Sichuan, 2002, 22(3): 158-160. doi:

    9. [9]

      陆艳, 吉高, 王显国, 宁亚明, 荆照.  以胺鲜酯、黄腐酸、微肥为主要成分的苜蓿种衣剂配方的研究[J]. 欧宝体育, 2019, 36(8): 2168-2175.
      LU Y, JI G, WANG X G, NING Y M, JING Z.  Alfalfa seed coating formula with diethyl aminoethyl hexanoate, fulvic acid, and microelement fertilizer[J]. Pratacultural Science, 2019, 36(8): 2168-2175.

    10. [10]

      孙晓慧, 李成亮, 陈剑秋, 刘龙飞, 王秋双, 杨帆.  不同胺鲜酯(DA-6)浓度及施用方式对菠菜生长的影响[J]. 北方园艺, 2017, (13): 122-128.
      SUN X H, LI C L, CHEN J Q, LIU L F, WANG Q S, YANG F.  Effects of different DA-6 concentrations and application methods on growth spinach[J]. Northern Horticulture, 2017, (13): 122-128.

    11. [11]

      苗鹏飞, 刘国杰, 单守明.  DA-6对草莓生长结果影响试验[J]. 中国果树, 2007, (3): 22-25. doi:
      MIAO P F, LIU G J, SHAN S M.  Effects of DA-6 on growth and fruiting of strawberry[J]. China Fruits, 2007, (3): 22-25. doi:

    12. [12]

      苗鹏飞, 刘国杰, 李绍华, 单守明.  DA-6对秋季草莓叶片光合速率和植株生长的影响[J]. 应用生态学报, 2007, 18(12): 2722-2726.
      MIAO P F, LIU G J, LI S H, SHAN S M.  Effects of foliar spraying DA-6 on the photosynthetic rate and plant growth of strawberry in autumn[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2722-2726.

    13. [13]

      单守明, 刘国杰, 李绍华.  DA-6对温室桃树光合作用和叶绿体活性的影响[J]. 植物营养与肥料学报, 2008, 14(6): 1237-1241. doi:
      SHAN S M, LIU G J, LI S H.  Effects of different DA-6 concentration on photosynthesis and chloroplast activity of peach in greenhouse[J]. Plant Nutrition and Fertilizer Science, 2008, 14(6): 1237-1241. doi:

    14. [14]

      LU J Z, GUAN P X, GU J M, YANG X L, WANG F, QI M F, LI T L, LIU Y F.  Exogenous DA-6 improves the low night temperature tolerance of tomato through regulating cytokinin[J]. Frontiers in Plant Science, 2021, (11): 599111-.

    15. [15]

      李昊胜, 李岩, 吴承来, 赵林茂, 张春庆.  花后DA-6处理对玉米自交系郑58种子活力的影响[J]. 作物杂志, 2019, (1): 186-190.
      LI H S, LI Y, WU C L, ZHAO L M, ZHANG C Q.  Effects of DA-6 treatment at post-anthesis on seed vigor of maize inbred Zheng 58[J]. Crops, 2019, (1): 186-190.

    16. [16]

      华劲松, 王祥吉, 陈理权.  不同浓度胺鲜酯浸种对藜麦种子萌发的影响[J]. 耕作与栽培, 2020, 40(1): 29-31.
      HUA J S, WANG X J, CHEN L Q.  Effects of DA-6 seed soaking on seeds germination characteristics of qinoa[J]. Tillage and Cultivation, 2020, 40(1): 29-31.

    17. [17]

      张子龙.  DA-6浸种对水稻幼苗生长及抗寒性的影响[J]. 贵州农业科学, 2001, 29(4): 14-17. doi:
      ZHANG Z L.  Effects of DA-6 on seeding growth and its cold resistance in rice[J]. Guizhou Agricultural Sciences, 2001, 29(4): 14-17. doi:

    18. [18]

      李东霞, 徐中亮, 符海泉, 张宁.  NaCl对椰枣种子发芽的胁迫以及DA-6对盐胁迫的缓解作用[J]. 中国南方果树, 2020, 49(1): 42-46.
      LI D X, XU Z L, FU H Q, ZHANG N.  NaCl-induced stress effects and alleviation function of DA-6 on seeds germination of Phoenix dactylifera[J]. South China Fruits, 2020, 49(1): 42-46.

    19. [19]

      邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2020: 161-174.
      ZOU Q. Experimental Guidance on Plant Physiology. Beijing: China Agricultural Press, 2020: 161-174.

    20. [20]

      李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006.
      LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2006.

    21. [21]

      李州, 彭燕, 尹淑霞, 韩烈保.  甘露糖对白三叶抗旱性、糖及糖醇类代谢物积累的影响[J]. 草业学报, 2019, 28(12): 85-93. doi:
      LI Z, PENG Y, YIN S X, HAN L B.  Effects of exogenous mannose application on drought tolerance, sugars, and sugar alcohol accumulation in whit clover[J]. Acta Prataculeurae Sinica, 2019, 28(12): 85-93. doi:

    22. [22]

      ELSTNER E F, HEUPEL A.  Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase[J]. Analytical Biochemistry, 1976, 70(2): 616-620. doi:

    23. [23]

      VELIKOVA V, YORDANOV I, EDREVA A.  Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines[J]. Plant Science, 2000, 151(1): 59-66. doi:

    24. [24]

      DHINDSA R S, DHINDSA P P, THORPE T A.  Leaf senescence: Correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of Experimental Botany, 1981, 32(126): 93-101.

    25. [25]

      BLUM A, EBERCON A.  Cell membrane stability as a measure of drought and heat tolerance in wheat[J]. Crop Science, 1981, 21(1): 43-47. doi:

    26. [26]

      RIES G S.  Superoxide dismutases: I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2): 309-314. doi:

    27. [27]

      CHANCE B, MAEHLY A C.  The assay of catalases and peroxidases[J]. Methods in Enzymology, 1955, 2(55): 764-775.

    28. [28]

      NAKANO Y, ASADA K.  Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867-880.

    29. [29]

      CAKMAK I, STRBAC D, MARSCHNER H.  Activities of hydrogen peroxide-scavenging enzymes in germination wheat seeds[J]. Journal of Experimental Botany, 1993, 44(258): 127-132.

    30. [30]

      钟旻依, 张新全, 杨昕颖, 胡乙月, 姜杏, 聂刚.  植物对重金属铬胁迫响应机制的研究进展[J]. 欧宝体育, 2019, 36(8): 1962-1975.
      ZHONG M Y, ZHANG X Q, YANG X Y, HU Y Y, JIANG X, NIE G.  Recent advances in plant response to chromium stress[J]. Pratacultural Science, 2019, 36(8): 1962-1975.

    31. [31]

      AKINCI I E, AKINCI S.  Effect of chromium toxicity on germination and early seeding growth in melon (Cycymis melo L.)[J]. African Journal of Biotechnology, 2010, 929(29): 4589-4594.

    32. [32]

      ISLAM M K, ALAM I, KHANAM M S, LEE S Y, WAGHMODE T R, HUH M R.  Accumulation and tolerance characteristics of chromium in nine jute varieties (Corchorus spp. and Hibiscus spp.)[J]. Plant Omics, 2014, 7(5): 392-402.

    33. [33]

      任安芝, 高玉葆.  铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J]. 生态学杂志, 2000, 19(1): 19-22. doi:
      REN A Z, GAO Y B.  Effects of single and combinative pollutions of lead, cadmium and chromium on the germination of Brassica chinensis[J]. Chinese Journal of Ecology, 2000, 19(1): 19-22. doi:

    34. [34]

      PANDEY V, DXIXT V, SHYAM R.  Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts[J]. Protoplasma, 2009, 236(1/4): 85-. doi:

    35. [35]

      SUTHAR B, PANSURIYA J, KHER M M, PATEL V R, NATARAJ M.  Biochemical changes under chromium stress on germination seedlings of Vigna radiata[J]. Notulae Scientia Biologicae, 2014, 6(1): 77-. doi:

    36. [36]

      梁颖.  DA-6对水稻幼苗抗冷性的影响[J]. 山地农业生物学报, 2003, 22(2): 95-98. doi:
      LIANG Y.  Influence of DA-6 on cold resistance of rice seeding[J]. Journal of Mountain Agriculture and Biology, 2003, 22(2): 95-98. doi:

    37. [37]

      ZHANG C P, HE P, LI Y C, LI Y, YAO H K, DUAN J Y, HU S J, ZHOU H, LI S.  Exogenous diethyl aminoethyl hexanoate, a plant growth regulator, highly improved the salinity tolerance of important medicinal plant Cassia obtusifolia[J]. Journal of Plant Growth Regulation, 2016, 35(2): 330-344. doi:

    38. [38]

      杨献光, 梁卫红, 齐志广, 马文师, 沈银柱.  植物非生物胁迫应答的分子机制[J]. 麦类作物学报, 2006, 26(6): 158-. doi:
      YANG X G, LIANG W H, QI Z G, MA W S, SHEN Y Z.  Molecular mechanisms of plant responses to abiotic stresses[J]. Journal of Triticeae Crops, 2006, 26(6): 158-. doi:

    39. [39]

      葛春辉, 张云舒, 唐光木.  生物炭的施入对Cr (Ⅵ)胁迫条件下玉米幼苗的生理响应及铬吸收的影响[J]. 中国农学通报, 2020, 36(27): 20-25.
      GE C H, ZHANG Y S, TANG G M.  Bilchar application under chromium (Ⅵ) stress: Effect on physiological response and chromium (Ⅵ) absorption of maize seedlings[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 20-25.

    40. [40]

      徐维杰, 王庆亚, 杨文嘉, 孙建云, 戴廷波.  铬(Cr6+)胁迫对不同基因型小麦种子萌发及幼苗抗氧化和渗透调节的影响[J]. 麦类作物学报, 2017, 37(8): 1112-1119. doi:
      XU W J, WANG Q Y, YANG W J, SUN J Y, DAI T B.  Effect of chromium (Cr6+) stress on seed germination, anti-oxidation and osmotic adjustment in seeding of different genotypes of wheat[J]. Journal of Triticeae Crops, 2017, 37(8): 1112-1119. doi:

    41. [41]

      MOU H M, LIU G J, YANG Q, MAIMAITI A S, FU X J.  Hexanoic acid 2-(diethylamino) ethyl ester enhances chilling tolerance in strawberry seedlings by impact on photosynthesis and antioxidants[J]. Biologia Plantarum, 2011, 55(4): 793-796.

    42. [42]

      杨永义, 马彦军, 魏林源, 马瑞, 侍新萍, 张莹花, 唐卫东.  不同强度净风、风沙流吹袭对黑果枸杞叶片生理指标的影响[J]. 欧宝体育, 2020, 37(9): 1795-1802.
      YANG Y Y, MA Y J, WEI L Y, MA R, SHI X P, ZHANG Y H, TANG W D.  Effects of net-wind and wind-sand flow on the physiology of Lycium ruthenicum[J]. Pratacultural Science, 2020, 37(9): 1795-1802.

    43. [43]

      韦江玲, 潘良浩, 陈元松, 范航清.  重金属Cr6+胁迫对茳芏生理生态特征的影响[J]. 广西植物, 2014, 34(1): 89-94. doi:
      WEI J L, PAN L H, CHEN Y S, FAN H Q.  Physiological and ecological characteristics of Cyperus malaccensis to Cr6+ stress[J]. Guihaia, 2014, 34(1): 89-94. doi:

    44. [44]

      梁琪慧, 吴永胜, 刘刚, 李旭升, 唐茜.  Cr、As、Pb、Cd复合污染对茶树叶片酶活性和细胞膜透性的影响[J]. 南方农业, 2012, 6(7): 1-6.
      LIANG Q H, WU Y S, LIU G, LI X S, TANG Q.  Effects of compound of Cr, As, Cd and Pb on enzyme activities and cell membrance permeability of leaves of tea[J]. South China Agriculture, 2012, 6(7): 1-6.

    45. [45]

      NEVO N, ZIV V, MARIKOSVSKY M, HARRIS C C, MAHLER O.  Cu/Zn superoxide dismutase plays important role in immune response[J]. The Journal of Immunology, 2003, 170(6): 2993-3001. doi:

    46. [46]

      赵肖琼, 梁泰帅, 赵润柱.  壳聚糖对PEG胁迫下小麦幼苗生长及抗氧化系统的影响[J]. 中国农业科技导报, 2018, 20(4): 20-28.
      ZHAO X Q, LIANG T S, ZHAO R Z.  Effects of chitooligosaccharide on plant growth and antioxidant system in seedlings of wheat (Triticum aestivum L.) under PEG stress[J]. Journal of Agricultural Science and Technology, 2018, 20(4): 20-28.

    47. [47]

      PANDEY V, DIXIT V, SHYAM R.  Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium[J]. Chemosphere, 2005, 61(1): 40-47. doi:

    48. [48]

      万永吉, 郑文教, 方煜, 王铮敏, 邱瑾.  重金属铬(Ⅲ)胁迫对红树植物秋茄幼苗SOD、POD活性及其同工酶的影响[J]. 厦门大学学报(自然科学版), 2008, 47(4): 571-574.
      WAN Y J, ZHENG W J, FANG Y, WANG Z M, QIU J.  Effects of Cr (Ⅲ) stress on activities and isozymes of SOD and POD of Kandelia candel mangrove seedlings[J]. Journal of Xiamen University (Natural Science), 2008, 47(4): 571-574.

    49. [49]

      梁艳萍, 牟红梅, 王晶晶, 刘国杰, 赛买提, 玉素甫.  不同光强下DA-6对草莓光合作用及抗氧化酶活性的影响[J]. 中国农业大学学报, 2011, 16(5): 71-76. doi:
      LIANG Y P, MOU H M, WANG J J, LIU G J, SAI M T, YU S F.  Effects of DA-6 on leaf photosynthesis and antioxidant enzyme activities of strawberry under different light intensities[J]. Journal of China Agricultural University, 2011, 16(5): 71-76. doi:

    50. [50]

      王雷, 何闪英, 李阿南, 郭海慧.  MGDA与DA-6强化黑麦草对Cd污染土壤的修复作用[J]. 水土保持学报, 2016, 30(3): 134-140, 146.
      WANG L, HE S Y, LI A N, GUO H H.  MGDA and DA-6 enhanced ryegrass to phytoextract Cd from contaminated soil[J]. Journal of Soil and Water Conservation, 2016, 30(3): 134-140, 146.

    1. [1]

      钟旻依张新全杨昕颖胡乙月姜杏聂刚 . 植物对重金属铬胁迫响应机制的研究进展. 欧宝体育, doi: 

    2. [2]

      罗玲许肖恒杨康李州张新全 . 非生物胁迫下植物衰老和热激蛋白响应. 欧宝体育, doi: 

    3. [3]

      贾彤马赛男雍斌张艳吴星李州彭燕 . 白三叶TrMYB1R1全长克隆及转录表达分析. 欧宝体育, doi: 

    4. [4]

      李亚萍彭燕 . IAA改善PEG处理下白三叶幼苗叶片抗氧化保护和渗透调节能力. 欧宝体育, doi: 

    5. [5]

      潘多锋申忠宝王建丽高超李道明张瑞博邸桂俐刘慧来 . 碱性盐胁迫对偃麦草苗期生长的影响. 欧宝体育, doi: 

    6. [6]

      陆艳吉高王显国宁亚明荆照 . 以胺鲜酯、黄腐酸、微肥为主要成分的苜蓿种衣剂配方的研究. 欧宝体育, doi: 

    7. [7]

      崔碧霄韩刚李凯荣王波 . 土壤石油污染下柠条生长反应与抗氧化保护响应. 欧宝体育,

    8. [8]

      解玉怀尚庆辉古丽美娜王英楠张崇玉杨维仁张桂国 . 饲料添加剂植物多糖的生物学作用. 欧宝体育, doi: 

    9. [9]

      林武星谷 凌朱 炜聂 森 . 干旱胁迫对台湾海桐生长和生理生化特性的影响. 欧宝体育, doi: 

    10. [10]

      李静静李炜陈雅君尹慧李艳侠 . 钾素改善干旱胁迫下早熟禾的形态及相关生长指标. 欧宝体育, doi: 

    11. [11]

      崔婷茹于慧敏李会彬边秀举王丽宏 . 干旱胁迫及复水对狼尾草幼苗生理特性的影响. 欧宝体育, doi: 

    12. [12]

      姜红岩范希峰温海峰韩朝滕文军滕珂尹淑霞 . 日本结缕草ZjNAC3基因在盐胁迫中的功能解析. 欧宝体育, doi: 

    13. [13]

      寇江涛 . 外源2, 4-表油菜素内酯对盐胁迫下燕麦种子萌发抑制的缓解效应. 欧宝体育, doi: 

    14. [14]

      蒋永梅姚 拓田永亮李建宏刘 婷高亚敏张建贵张 标 . 微生物肥料对青梗花椰菜生长和土壤微生物特性的影响. 欧宝体育, doi: 

    15. [15]

      王美宁蔺伟虎马碧花李苗苗田沛 . Zn和Cd处理下内生真菌对中华羊茅生长及内源激素的影响. 欧宝体育, doi: 

    16. [16]

      张 丽彭重华王莹雪卢思维 . 14种植物对土壤重金属的分布、富集及转运特性. 欧宝体育, doi: 

    17. [17]

      吴建慧兰凤张静牛喆王玲 . 重金属铅对绢毛委陵菜生理特性和叶片超微结构的影响. 欧宝体育, doi: 

    18. [18]

      吴召林祁娟刘文辉金鑫杨航宿敬龙李明 . 氮素形态及其配比对老芒麦生长及生理特性的影响. 欧宝体育, doi: 

    19. [19]

      杜超 . WRKY转录因子家族在植物响应逆境胁迫中的功能及应用. 欧宝体育, doi: 

    20. [20]

      徐海鹏李慧萍金小煜金宁牛奎举马晖玲 . 草地早熟禾愈伤组织对NaCl胁迫的生理响应. 欧宝体育, doi: 

  • 欧宝体育

    图 1  不同浓度铬胁迫对白三叶种子发芽指标的影响

    Figure 1.  Effects of different concentrations of Cr6+ on seed germination parameters of Trifolium repens

    不同小写字母表示不同处理间差异显著(P < 0.05);下图同。

    Lowercase letters indicate a significant difference among different treatments at the 0.05 level; this is applicable for the followingfigures as well.

    图 2  铬胁迫下胺鲜酯(DA-6)浸种对白三叶种子萌发过程中表型变化、根长和茎长的影响

    Figure 2.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on phenotype and root and stem length of Trifolium repens during seed germination under Cr6+ stress

    CK: 对照;CK + DA-6: 对照+ 60 mmol·L−1 DA-6浸种;Cr: 7.5 mmol·L−1 Cr6+胁迫;Cr + DA-6: 7.5 mmol·L−1 Cr6+胁迫+ 60 mmol·L−1 DA-6浸种。下图同。

    CK: Control; CK + DA-6: Control + 60 mmol·L−1 DA-6 pretreatment; Cr: 7.5 mmol·L−1 Cr6+ stress; Cr + DA-6: 7.5 mmol·L−1 Cr6+ stress + 60 mmol·L−1 DA-6 pretreatment. This is applicable for the following figures as well.

    图 3  铬胁迫下胺鲜酯(DA-6)浸种对白三叶种子萌发过程中可溶性糖含量、游离脯氨酸含量和渗透势的影响

    Figure 3.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on soluble sugar content, free proline content, and osmotic potential of Trifolium repens during germination under Cr6+ stress

    以干重(DW)计算(suan)。

    Calculation based on the dry weight (DW).

    图 4  铬胁迫下胺鲜酯(DA-6)浸种对白三叶种子萌发过程中活性氧、丙二醛含量和电解质渗透率的影响

    Figure 4.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on reactive oxygen species, malondialdehyde (MDA) content, and electrolyte leakage of Trifolium repens during germination under Cr6+ stress

    以干重(DW)计算。

    Calculation based on the dry weight (DW).

    图 5  铬胁迫下胺鲜酯(DA-6)浸种对白三叶种子萌发过程中抗氧化酶活性的影响

    Figure 5.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on antioxidant enzyme activities of Trifolium repens during germination under Cr6+ stress

    以每分钟内吸光度(A)变化0.01为一个酶活性单位(U);以蛋白(Protein)含量计算 图6同。

    The absorbance (A) at 0.01 change in A per minute is taken as an enzyme activity unit (U); calculation based on protein content; this is applicable for Figure 6 as well.

    图 6  铬胁迫下胺鲜酯(DA-6)浸种对白三叶种子萌发过程中抗坏血酸-谷胱甘肽循环关键酶活性的影响

    Figure 6.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on key enzyme activities of the AsA-GSH cycle of Trifolium repens during germination under Cr6+ stress

    以每分(fen)钟内吸光度(du)(A)变(bian)化0.01为一(yi)个酶活性单位(wei)(U),以蛋(dan)白(Protein)含(han)量计算。

    The absorbance (A) at 0.01 change in A per minute was taken as an enzyme activity unit (U), calculation based on protein content.

    表 1  Cr6+胁迫下胺鲜酯(DA-6)浸种对白三叶种子发芽指标的影响

    Table 1.  Effects of soaking seeds in diethyl aminoethyl hexanoate (DA-6) on seed germination parameters of Trifolium repens during germination under Cr6+ stress

    DA-6浓度
    DA-6
    concentration/
    (mmol·L−1)
    萌发率
    Germination percentage/%
    发芽势
    Germination vigor/%
    发芽指数
    Germination index
    平均发芽时间
    Mean germination time/d

    H2O
    重铬酸钾
    K2Cr2O7

    H2O
    重铬酸钾
    K2Cr2O7

    H2O
    重铬酸钾
    K2Cr2O7

    H2O
    重铬酸钾
    K2Cr2O7
    0 94.80 ± 3.03ab 62.00 ± 4.00c* 90.00 ± 4.00a 59.33 ± 3.06c* 32.32 ± 3.14a 17.89 ± 0.98c* 1.76 ± 0.23c 2.16 ± 0.11ab
    20 97.60 ± 0.89a 68.00 ± 2.83bc* 90.00 ± 2.00a 59.00 ± 4.24c* 34.44 ± 2.74a 20.54 ± 0.53bc* 1.73 ± 0.10c 2.03 ± 0.04ab
    40 94.00 ± 3.74ab 72.67 ± 1.15b* 86.00 ± 4.69ab 66.67 ± 3.06b* 30.57 ± 3.47ab 23.10 ± 2.45b* 1.96 ± 0.17bc 2.01 ± 0.22ab
    60 95.60 ± 2.19ab 81.50 ± 4.12a* 83.20 ± 2.28b 78.00 ± 4.32a* 31.83 ± 1.91a 29.47 ± 1.89a 1.94 ± 0.17bc 1.74 ± 0.22b
    100 93.20 ± 2.28b 77.33 ± 3.06ab* 84.40 ± 4.10b 71.33 ± 3.06b* 27.46 ± 3.30b 27.45 ± 3.69a 2.13 ± 0.22b 1.86 ± 0.26ab
    200 85.00 ± 5.77c 50.67 ± 3.06d* 67.60 ± 4.90c 42.67 ± 4.62d* 24.13 ± 4.52c 14.69 ± 2.57c* 2.55 ± 0.35a 2.32 ± 0.46a
     同列不同小写字母表示不同处理间差异显著(P < 0.05);*表示相同DA-6浓度预处理下不同处理间(水处理和Cr6+处理)差异显著(P < 0.05)。
     Lowercase letters within the same column indicate a significant difference among different treatments at the 0.05 level, and * indicates a significant difference between water and Cr6+ concentration under the same DA-6 pretreatment at the 0.05 level.
    下载: 导出CSV
    欧宝体育
  • <tfoot id='al0fg'></tfoot>

          <legend id='al0fg'><style id='al0fg'><dir id='al0fg'><q id='al0fg'></q></dir></style></legend>
          <i id='al0fg'><tr id='al0fg'><dt id='al0fg'><q id='al0fg'><span id='al0fg'><b id='al0fg'><form id='al0fg'><ins id='al0fg'></ins><ul id='al0fg'></ul><sub id='al0fg'></sub></form><legend id='al0fg'></legend><bdo id='al0fg'><pre id='al0fg'><center id='al0fg'></center></pre></bdo></b><th id='al0fg'></th></span></q></dt></tr></i><div id='al0fg'><tfoot id='al0fg'></tfoot><dl id='al0fg'><fieldset id='al0fg'></fieldset></dl></div>

              <bdo id='al0fg'></bdo><ul id='al0fg'></ul>

              1. 加载中
              2. 图(6)表(1)
                计量
                • PDF下载量:  1
                • 文章访问数:  69
                • HTML全文浏览量:  42
                文章相关
                • 通讯作者:  李州, lizhou1986814@163.com
                • 收稿日期:  2021-04-14
                • 接受日期:  2021-06-10
                • 网络出版日期:  2021-08-11
                通(tong)讯作者: 陈斌, bchen63@163.com
                • 1. 

                  沈(shen)阳化工大学材(cai)料科学与工程学院(yuan) 沈(shen)阳 110142

                1. 本站搜索
                2. 百度学术搜索
                3. 万方数据库搜索
                4. CNKI搜索

                /

                返回文章
                欧宝体育