欧宝体育

欢迎访问 欧宝体育,今天是

尖叶石(shi)竹蜡质突变体的耐盐生理响应

王金刚 刘建华 王奥夫 龚束芳 乔坤 周爱民

引用本文: 王金刚,刘建华,王奥夫,龚束芳,乔坤,周爱民. 尖叶石竹蜡质突变体的耐盐生理响应. 欧宝体育, 2021, 38(0): 1-11 doi: shu
Citation:  WANG J G, LIU J H, WANG A F, GONG S F, QIAO K, ZHOU A M. Physiological response to salt tolerance of a waxy mutant of . Pratacultural Science, 2021, 38(0): 1-11 doi: shu

尖叶石竹蜡质突变体的耐盐生理响应

    作者简介: 王金刚(1974-),男,黑龙江哈尔滨人,博士,教授,研究方向为观赏植物抗逆分子生物学。E-mail: wangjingang99@neau.edu.cn
    通讯作者: 周爱民(1984-),男,黑龙江哈尔滨人,博士,副教授,研究方向为观赏作物分子生物学。E-mail: aiminzhou@neau.edu.cn
  • 基金项目: 国家自然科学基金(31902052);黑龙江省自然科学基金(YQ2020C006)

摘要: 盐胁迫会引起植物的渗透胁迫、离子毒害,导致细胞失水、光合和呼吸作用受到抑制,进而影响植物的生长和发育。植物表皮蜡质可以阻止叶片的非气孔失水,减少蒸腾,减缓植物因胁迫而引起的生理干旱。本研究以观赏性草坪草尖叶石竹(Dianthus spiculifolius)的野生型(wild-type, WT)和表皮蜡质增强突变体(wax mutant, WM)为材料,比较了两者在NaCl胁迫下的表型和生理生化指标的变化规律。结果表明: 蜡质突变体在NaCl胁迫下维持了更高的水分含量从而表现出更好的耐盐表型。此外,蜡质突变体在NaCl胁迫下显示出更高的过氧化物酶和过氧化氢酶活性、可溶性糖含量、脯氨酸含量、光合能力以及更低的丙二醛含量。脱蜡试验显示蜡质突变体与野生型在盐胁迫下的相对含水量和持水力差异与表皮蜡质直接相关。本研究表明表皮蜡质在植物应答盐胁迫中具有重要作用。

English

    1. [1]

      TAFOLLA-ARELLAMO J C, BÁEZ-SAÑUDO R, TIZNADO-HERNÁNDEZ M E.  The cuticle as a key factor in the quality of horticultural crops[J]. Scientia Horticulturae, 2018, 232(1): 145-152.

    2. [2]

      AHMAD H M, MAHMOOD-UR-RAHMAN, ALI Q, AWAN S I.  Plant cuticular waxes: A review on functions, composition, biosyntheses mechanism and transportation[J]. Life Science Journal, 2015, 12(4s): 60-67.

    3. [3]

      Petit J, Bres C, Just D, Garcia V, Mauxion J P, Marion D, Bakan B, Joubes J, Domergue F, Rothan C.  Analyses of tomato fruit brightness mutants uncover both cutindeficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase[J]. Plant Physiology, 2014, 164(2): 888-906. doi:

    4. [4]

      BERNARD A, JOUBÈ S J.  Arabidopsis cuticular waxes: Advances in synthesis, export and regulation[J]. Progress in Lipid Research, 2013, 52(1): 110-129. doi:

    5. [5]

      Lee S B, Mi C S.  Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species[J]. Plant Cell Reports, 2015, 34(4): 557-572. doi:

    6. [6]

      BARTELS D, SUNKAR R.  Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24(1): 23-58. doi:

    7. [7]

      RIEDERER M, ARAND K, BURGHARDT M, HUA H, RIEDIE M, SCHUSTER A C, SMIRNOVA A, JIANG Y M.  Water loss from litchi (Litchi chinensis) and longan (Dimocarpus longan) fruits is biphasic and controlled by a complex pericarpal transpiration barrier[J]. Planta, 2015, 242(5): 1207-1219. doi:

    8. [8]

      PARSONS E P, POPOPVSKY S, LOHREY G T, ALKALAI-TUVIA S, PERZELAN Y, BOSLAND P, BEBELI P J, PARAN I, FALLIA E, JENKS M A.  Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum)[J]. Physiologia Plantarum, 2013, 149(2): 160-174. doi:

    9. [9]

      Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M.  The myb96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis[J]. Plant Cell, 2011, 23(7): 1138-1152.

    10. [10]

      AHARONI A, DIXIT S, JETTER R, THOENES E, ARKEL G V, PEREIRA A.  The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J]. The Plant Cell, 2004, 16(9): 2463-2480. doi:

    11. [11]

      KOSMA D K, BOURDENX B, BERNARD A, PARSONS E P, LU S Y, JOUBES J, JENKS M A.  The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009, 151(4): 1918-1929. doi:

    12. [12]

      HASANUZZAMAN M, DAVIES N W, SHABALA L, ZHOU M X, BRODRIBB T J, SHABALA S.  Residual transpiration as a component of salinity stress tolerance mechanism: A case study for barley[J]. BMC Plant Biology, 2017, 17(1): 107-. doi:

    13. [13]

      MILLS D, ZHANG G F, BENZIONI A.  Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro[J]. Journal of Plant Physiology, 2001, 158(8): 1031-1039. doi:

    14. [14]

      龚束芳, 刘恩慧, 姜童童, 周爱民, 王金刚.  尖叶石竹种子的EMS和60Co-γ诱变[J]. 欧宝体育, 2017, 34(11): 2226-2234. doi:
      Gong S f, Liu E h, Jiang T t, Zhou A m, Wang J g.  Analysis of EMS and 60Co-γ mutagenesis of Dianthus spiculifolius seeds[J]. Pratacultural Science, 2017, 34(11): 2226-2234. doi:

    15. [15]

      ZHOU A M, LIU E H, LIU J, FENG S, GONG S F, WANG J G.  Characterization of increased cuticular wax mutant and analysis of genes involved in wax biosynthesis in Dianthus spiculifolius[J]. Horticulture Research, 2018, 5(1): 40-. doi:

    16. [16]

      梁晓华, 施娅云, 张燕.  干旱胁迫对三种蕨类植物生理生化的影响[J]. 楚雄师范学院学报, 2020, 35(6): 55-61. doi:
      LIANG X H, SHI Y Y, ZHANG Y.  Effects of drought stress on physiological and biochemical changes of several pteridophytes[J]. Journal of Chuxiong Normal University, 2020, 35(6): 55-61. doi:

    17. [17]

      张萍, 张方秋, 赵秀娟, 阳桂芳, 罗號.  NaCl处理对中秋酥脆枣采后裂果的影响[J]. 安徽农学通报, 2021, 27(2): 46-50. doi:
      ZHANG P, ZHANG F Q, ZHAO X J, YANG G F, LUO H.  Effects of NaCl treatment on postharvest fruit cracking of "Zhongqiusucui"[J]. Anhui Agricultural Science Bulletin, 2021, 27(2): 46-50. doi:

    18. [18]

      李合生, 孙群, 赵世杰. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2004.
      LI H S, SUN Q, ZHAO S J. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2004.

    19. [19]

      惠红霞, 许兴, 李守明.  盐胁迫抑制枸杞光合作用的可能机理[J]. 生态学杂志, 2004, 23(1): 5-9. doi:
      HUI H X, XU X, LI S M.  Possible mechanism of inhibition on photosynthesis of Lycium barbarum under salt stress[J]. Chinese Journal of Ecology, 2004, 23(1): 5-9. doi:

    20. [20]

      刘炳响. 白榆耐盐生理生态机制研究. 保定: 河北农业大学博士学位论文, 2012.
      LIU B X. Research on the physiological-ecological mechanism of salt tolerance in Ulmus pumila. PhD Thesis. Baoding: Hebei Agricultural University, 2012.

    21. [21]

      王伟. 中山杉无性系幼苗耐盐特性及机理研究. 南京: 南京林业大学博士学位论文, 2010.
      WANG W. Study on salt-resistant characteristics and mechanism of clone seedlings of Taxodium hybrid. PhD Thesis. Nanjing: Nanjing Forestry University, 2010.

    22. [22]

      FARQUHAR G D, SHARKEY T D.  Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. doi:

    23. [23]

      OUERGHI Z, CORNIC G, ROUDANI M, AYADI A, BRULFERT J.  Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress[J]. Journal of Plant Physiology, 2000, 156(3): 335-340. doi:

    1. [1]

      李海萍周青平颜红波梁国玲刘勇 . 硝普钠对燕麦幼苗苗期盐胁迫缓解作用的生理机制. 欧宝体育, doi: 

    2. [2]

      张 昆李明娜曹世豪孙 彦 . 白颖苔草对不同浓度NaCl胁迫的响应及其耐盐阈值. 欧宝体育, doi: 

    3. [3]

      龙聪颖邓辉茗苏明洁蔡仕珍徐小明 . 3种盐胁迫对蓟幼苗生长及生理生化的影响. 欧宝体育, doi: 

    4. [4]

      蒋文博陈钊曹新龙牛军鹏郭志鹏崔健王佺珍 . 外源NO对盐胁迫下紫花苜蓿生长及膜脂过氧化的影响. 欧宝体育, doi: 

    5. [5]

      李京蓉马真刘泽华乔安海邓艳芳王文颖姚步青杨正荣张春辉周华坤 . 青海省6种高寒禾本科牧草的耐盐性. 欧宝体育, doi: 

    6. [6]

      李雁博张蕴薇哈依夏杜金鸿刘 源陈 果王佺珍 . 须芒草、虉草和柳枝稷对干旱和盐胁迫的生理响应. 欧宝体育, doi: 

    7. [7]

      龚束芳刘恩慧姜童童周爱民王金刚 . 尖叶石竹种子的EMS和60Co-γ诱变. 欧宝体育, doi: 

    8. [8]

      徐毓皎周宇杰罗瑛廖丽白昌军王志勇 . 钝叶草盐胁迫的临界浓度初步研究. 欧宝体育, doi: 

    9. [9]

      孙清洋李志勇李鸿雁李俊 . 不同盐浓度下9份老芒麦种质材料的萌发及生理特性. 欧宝体育, doi: 

    10. [10]

      王丹刘亚西周扬黎彬聂书明 . 油菜素内酯对盐胁迫下黑麦草种子萌发及幼苗生长的生理调控作用. 欧宝体育, doi: 

    11. [11]

      郭湘郭一帆黄思怡蒲棋杨康彭燕 . 干旱和盐胁迫对14个紫花苜蓿品种种子萌发特性的影响. 欧宝体育, doi: 

    12. [12]

      郝培彤李玉龙栾瑞涛王建丽王显国 . 21份引进BMR饲草高粱萌发期苗期耐旱耐盐性评价. 欧宝体育, doi: 

    13. [13]

      谢宇涵洪盛朱瑾王婧刘璐柴琦 . 5个高羊茅品种萌发期的耐盐性比较. 欧宝体育, doi: 

    14. [14]

      刘璐张跃群王婧顾卫兵张建全刘骐华王慧慧张馨馨柴琦 . 重度盐胁迫下12个地被草种萌发期的耐盐性比较. 欧宝体育, doi: 

    15. [15]

      牛东伟马男房卓研李彦慧 . 水分胁迫下墨西哥羽毛草耐旱生理. 欧宝体育, doi: 

    16. [16]

      张尚雄尼玛平措徐雅梅苗彦军包赛很那张卫红 . 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价. 欧宝体育, doi: 

    17. [17]

      隋永超冷暖姜赫男武雪罗智浩叶昊坤冯玉宇许立新 . 乙烯利对干旱胁迫下草地早熟禾生理指标的影响. 欧宝体育, doi: 

    18. [18]

      傅蕾李霞高璐蒋建雄孙建中 . 盐胁迫下泛菌属内生细菌对杂交狼尾草发芽及生理的影响. 欧宝体育, doi: 

    19. [19]

      陈明明成舒飞王家佳赵超越才华朱延明 . 转GsbZIP33基因苜蓿的耐盐性分析 . 欧宝体育, doi: 

    20. [20]

      陈雅琦苏楷淇李春杰 . 盐胁迫对醉马草和高羊茅种子萌发及幼苗生长的影响. 欧宝体育, doi: 

  • 欧宝体育

    图 1  NaCl胁迫对尖叶石竹野生型和蜡质突变体生长表型、相对含水量和叶片持水力的影响

    Figure 1.  Effects of NaCl stress on growth phenotype, relative water content, and water retention capacity of the wild-type and a waxy mutant of Dianthus spiculifolius

    WT: 野生型;WM: 蜡质突变体;*代表同一处理下尖叶石竹蜡质突变体与野生型间差异显著(P < 0.05);下同。

    WT: Wild-type; WM: Waxy mutant; * represents a significant difference between the waxy mutant and the wild-type of D. spiculifolius under the same treatment at the 0.05 level; this is applicable for the following figures as well.

    图 2  盐胁迫对尖叶石竹野生型和蜡质突变体蒸腾速率的影响

    Figure 2.  Effects of NaCl stress on transpiration rate of the wild-type and a waxy mutant of Dianthus spiculifolius

    图 3  盐胁迫对尖叶石竹野生型和蜡质突变体抗氧化酶活性和丙二醛含量的影响

    Figure 3.  Effects of NaCl stress on the activity of antioxidant enzymes and MDA content of the wild-type and a waxy mutant of Dianthus spiculifolius

    SOD: 超(chao)氧化(hua)物歧化(hua)酶;POD: 过氧化(hua)物酶;CAT: 过氧化(hua)氢(qing)酶;MDA: 丙二醛。

    SOD, superoxide dismutase; POD, peroxide; CAT, catalase; MDA, malondialdehyde

    图 4  NaCl胁迫对尖叶石竹野生型和蜡质突变体渗透调节物质含量的影响

    Figure 4.  Effects of NaCl stress on the content of osmotic regulatory substances in the wild-type and a waxy mutant of Dianthus spiculifolius

    图 5  NaCl胁迫对尖叶石竹野生型和蜡质突变体净光合速率、气孔导度和胞间CO2浓度的影响

    Figure 5.  Effects of NaCl stress on net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration of the wild-type and a waxy mutant of Dianthus spiculifolius

    图 6  NaCl胁迫对尖叶石竹野生型和蜡质突变体叶绿素荧光参数的影响

    Figure 6.  Effects of NaCl stress on chlorophyll fluorescence parameters of the wild-type and a waxy mutant of Dianthus spiculifolius

    图 7  盐胁迫对脱蜡尖叶石竹野生型和蜡质突变体相对含水量和叶片持水力的影响

    Figure 7.  Effects of NaCl stress on relative water content and water retention capacity of the wild-type and a waxy mutant of Dianthus spiculifolius after dewaxing

    欧宝体育
  • 加载中
WeChat 点击查看(kan)大图
图(7)
计量
  • PDF下载量:  1
  • 文章访问数:  33
  • HTML全文浏览量:  12
文章相关
  • 通讯作者:  周爱民, aiminzhou@neau.edu.cn
  • 收稿日期:  2021-05-08
  • 接受日期:  2021-07-04
  • 网络出版日期:  2021-09-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工(gong)大学材(cai)料科学与工(gong)程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
欧宝体育